873 resultados para hot nitrogen purging
Resumo:
Specific leaf nitrogen (SLN, g/m(2)) is known to affect radiation use efficiency (RUE, g/MJ) in different crops, However, this association and importance have not been well established over a range of different nitrogen regimes for held-grown sunflower (Helianthus annuus L.). An experiment was conducted to investigate different combinations and rates of applied nitrogen on SLN, RUE, and growth of sunflower, A fully irrigated crop was sown on an alluvial-prairie soil (Fluventic Haplustoll) and treated with five combinations of applied nitrogen, Greater nitrogen increased biomass, grain number, and yield, but did not affect harvest index energy-corrected for oil (0.4) or canopy extinction coefficient (0.88), Decreases in biomass accumulation under low nitrogen treatments were associated,vith reductions in leaf area index (LAI) and light interception, When SLN and RUE were examined together, both were less in the anthesis to physiological maturity period, but relatively stable between bud visible and anthesis, However, the effects of canopy SLN on RUE were confounded by high SLN in the top of the canopy and the crop maintaining SLN by reducing LAI, Measurements of leaf CO2 assimilation and theoretical analyses of RUE supported that RUE was related to SLN, The major effect of nitrogen on early growth of sunflower was mediated by leaf area and the distribution of SLN in the canopy rather than direct effects of canopy SLN on RUE alone. Greater responses of RUE to SLN are more evident later in growth, and may be related to the demand of nitrogen by the grain.
Resumo:
Protein, amino acids and ammonium were the main forms of soluble soil nitrogen in the soil solution of a subtropical heathland (wallum). After fire, soil ammonium and nitrate increased 90- and 60-fold, respectively. Despite this increase in nitrate availability after fire, wallum species exhibited uniformly low nitrate reductase activities and low leaf and xylem nitrate, During waterlogging soil amino acids increased, particularly gamma-aminobutyric acid (GABA) which accounted for over 50% of amino nitrogen. Non-mycorrhizal wallum species were significantly (P < 0.05) N-15-enriched (0.3-4.3 parts per thousand) compared to species with mycorrhizal associations (ericoid-type, ecto-, va-mycorrhizal) which were strongly depleted in N-15 (-6.3 to -1.8 parts per thousand). Lignotubers and roots had delta(15)N signatures similar to that of the leaves of respective species. The exceptions were fine roots of ecto-, ecto/va-, and ericoid type mycorrhizal species which were enriched in N-15 (0.1-2 4 parts per thousand). The delta(15)N signatures of delta(15)N(total soil N) and delta(15)N(soil NH4+) were in the range 3.7-4.5 parts per thousand, whereas delta(15)N(soil NO3-) was significantly (P < 0.05) more enriched in N-15 (9.2-9.8 parts per thousand). It is proposed that there is discrimination against N-15 during transfer of nitrogen from fungal to plant partner. Roots of selected species incorporated nitrogen sources in the order of preference: ammonium > glycine > nitrate. The exception were proteoid roots of Hakea (Proteaceae) which incorporated equal amounts of glycine and ammonium.
Resumo:
Systems approaches can help to evaluate and improve the agronomic and economic viability of nitrogen application in the frequently water-limited environments. This requires a sound understanding of crop physiological processes and well tested simulation models. Thus, this experiment on spring wheat aimed to better quantify water x nitrogen effects on wheat by deriving some key crop physiological parameters that have proven useful in simulating crop growth. For spring wheat grown in Northern Australia under four levels of nitrogen (0 to 360 kg N ha(-1)) and either entirely on stored soil moisture or under full irrigation, kernel yields ranged from 343 to 719 g m(-2). Yield increases were strongly associated with increases in kernel number (9150-19950 kernels m(-2)), indicating the sensitivity of this parameter to water and N availability. Total water extraction under a rain shelter was 240 mm with a maximum extraction depth of 1.5 m. A substantial amount of mineral nitrogen available deep in the profile (below 0.9 m) was taken up by the crop. This was the source of nitrogen uptake observed after anthesis. Under dry conditions this late uptake accounted for approximately 50% of total nitrogen uptake and resulted in high (>2%) kernel nitrogen percentages even when no nitrogen was applied,Anthesis LAI values under sub-optimal water supply were reduced by 63% and under sub-optimal nitrogen supply by 50%. Radiation use efficiency (RUE) based on total incident short-wave radiation was 1.34 g MJ(-1) and did not differ among treatments. The conservative nature of RUE was the result of the crop reducing leaf area rather than leaf nitrogen content (which would have affected photosynthetic activity) under these moderate levels of nitrogen limitation. The transpiration efficiency coefficient was also conservative and averaged 4.7 Pa in the dry treatments. Kernel nitrogen percentage varied from 2.08 to 2.42%. The study provides a data set and a basis to consider ways to improve simulation capabilities of water and nitrogen effects on spring wheat. (C) 1997 Elsevier Science B.V.
Resumo:
Objective To investigate the association between the CYP17 alpha gene polymorphism and hot flushes in postmenopausal women. Methods Ninety-three non-hysterectomized, postmenopausal women were enrolled in this study. Vasomotor symptoms were assessed at the baseline visit and based on information provided by each participant. The genotypic polymorphism of CYP17 alpha gene was analyzed by PCR-RFLP assay using genomic DNA isolated from peripheral blood lymphocytes. Results Thirty-six women reported hot flushes of mild intensity, 25 reported hot flushes of moderate intensity and 32 of severe intensity. There was no significant difference between the severity of hot flushes and the CYP17 genotype or allele frequencies, 0.58 and 0.67 respectively. No association was found between hot flush severity and the CYP17 allele (odds ratio = 1.17, p = 0.61). Conclusion The results of this study suggest that the CYP17 MspAI polymorphism was not significantly associated with an increased risk of reporting hot flushes. At the World Congress on Menopause in Madrid, May 2008, Dr Massad-Costa was awarded the Robert Greenblatt Prize for Basic Science for the study reported in this paper.
Resumo:
Purpose: Adequate energy provision and nitrogen losses prevention of critically ill patients are essentials for treatment and recovery. The aims of this study were to evaluate energy expenditure (EE) and nitrogen balance (NB) of critically ill patients, to classify adequacy of energy intake (El), and to verify adequacy of El capacity to reverse the negative NB. Methods: Seventeen patients from an intensive care unit were evaluated within a 24-hour period. Indirect calorimetry was performed to calculate patient`s EE and Kjeldhal for urinary nitrogen analysis. The total El and protein intake were calculated from the standard parenteral and enteral nutrition infused. Underfeeding was characterized as El 90% or less and overfeeding as 110% or greater of EE. The adequacy of the El (El EE(-1) x 100) and the NB were estimated and associated with each other by Spearman coefficient. Results: The mean EE was 1515 +/- 268 kcal d(-1) and most of the patients (11/14) presented a negative NB (-8.2 +/- 4.7 g.d(-1)). A high rate (53%) of inadequate energy intake was found, and a positive correlation between El EE(-1) and NB was observed (r = 0.670; P = .007). Conclusion: The results show a high rate of inadequate El and negative NB, and equilibrium between El and EE may improve NB. Indirect calorimetry can be used to adjust the energy requirements in the critically ill patients. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
We compared diurnal patterns of vaginal temperature in lactating cows under grazing conditions to evaluate genotype effects on body temperature regulation. Genotypes evaluated were Holstein, Jersey, Jersey x Holstein and Swedish Red x Holstein. The comparison of Holstein and Jersey versus Jersey x Holstein provided a test of whether heterosis effects body temperature regulation. Cows were fitted with intravaginal temperature recording devices that measured vaginal temperature every 15 min for 7 days. Vaginal temperature was affected by time of day (P < 0.0001) and genotype x time (P < 0.0001) regardless of whether days in milk and milk yield were used as covariates. Additional analyses indicated that the Swedish Red x Holstein had a different pattern of vaginal temperatures than the other three genotypes (Swedish Red x Holstein vs others x time; P < 0.0001) and that Holstein and Jersey had a different pattern than Jersey x Holstein [(Holstein + Jersey vs Jersey x Holstein) x time, P < 0.0001]. However, Holstein had a similar pattern to Jersey [(Holstein vs Jersey) x time, P > 0.10]. These genotype x time interactions reflect two effects. First, Swedish Red x Holstein had higher vaginal temperatures than the other genotypes in the late morning and afternoon but not after the evening milking. Secondly, Jersey x Holstein had lower vaginal temperatures than other genotypes in the late morning and afternoon and again in the late night and early morning. Results point out that there are effects of specific genotypes and evidence for heterosis on regulation of body temperature of lactating cows maintained under grazing conditions and suggest that genetic improvement for thermotolerance through breed choice or genetic selection is possible.
Resumo:
Introduction: The aim of this study was to assess cyclic fatigue resistance in rotary nickel-titanium instruments submitted to nitrogen ion implantation by using a custom-made cyclic fatigue testing apparatus. Methods: Thirty K3 files, size #25, taper 0.04, were divided into 3 experimental groups as follows: group A, 12 files exposed to nitrogen ion implantation at a dose of 2.5 x 10(17) ions/cm(2), accelerating voltage of 200 kV, currents of 1 mu A/cm(2), 130 degrees C temperature, and vacuum conditions of 10 x 10(-6) torr for 6 hours; group B, 12 nonimplanted files; and group C, 6 files submitted to thermal annealing for 6 hours at 130 degrees C. One extra file was used for process control. All files were submitted to a cyclic fatigue test that was performed with an apparatus that allowed the instruments to rotate freely, simulating rotary instrumentation of a curved canal (40-degree, 5-mm radius curve). An electric motor handpiece was used with a contra-angle of 16:1 at an operating speed of 300 rpm and a torque of 2 N-cm. Time to failure was recorded with a stopwatch in seconds and subsequently converted to number of cycles to fracture. Data were analyzed with the Student t test (P < .05). Results: Ion-implanted instruments reached significantly higher cycle numbers before fracture (mean, 510 cycles) when compared with annealed (mean, 428 cycles) and nonimplanted files (mean, 381 cycles). Conclusions: Our results showed that nitrogen ion implantation improves cyclic fatigue resistance in rotary nickel-titanium instruments. Industrial implementation. of this surface modification technique would produce rotary nickel-titanium instruments with a longer working life. (J Endod 2010;36:1183-1186)
Resumo:
Measurement of nitrifiable nitrogen contained in wastewater by combining the existing respirometric and titrimetric principles is reported. During an in-sensor-experiment using nitrifying activated sludge. both the dissolved oxygen (DO) and pH in the mixed liquor were measured, and the FH was controlled at a set-point through titration of base or acid. A combination of the oxygen uptake rate (OUR), which was obtained from the measured DO signal, and the titration data allowed calculation of the nitrifiable nitrogen and the short-term biological oxygen demand (BOD) of the wastewater sample that was initially added to the sludge. The calculation was based solely on stoichiometric relationships. The approach was preliminarily tested with two types of wastewaters using a prototype sensor. Good correlation was obtained. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
The use of gate-to-drain capacitance (C-gd) measurement as a tool to characterize hot-carrier-induced charge centers in submicron n- and p-MOSFET's has been reviewed and demonstrated. By analyzing the change in C-gd measured at room and cryogenic temperature before and after high gate-to-drain transverse field (high field) and maximum substrate current (I-bmax) stress, it is concluded that the degradation was found to be mostly due to trapping of majority carriers and generation of interface states. These interface states were found to be acceptor states at top half of band gap for n-MOSFETs and donor states at bottom half of band gap for p-MOSFETs. In general, hot electrons are more likely to be trapped in gate oxide as compared to hot holes while the presence of hot holes generates more interface states. Also, we have demonstrated a new method for extracting the spatial distribution of oxide trapped charge, Q(ot), through gate-to-substrate capacitance (C-gb) measurement. This method is simple to implement and does not require additional information from simulation or detailed knowledge of the device's structure. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Stable carbon and nitrogen isotope signatures (delta C-13 and delta N-15) of Cannabis sativa were assessed for their usefulness to trace seized Cannabis leaves to the country of origin and to source crops by determining how isotope signatures relate to plant growth conditions. The isotopic composition of Cannabis examined here covered nearly the entire range of values reported for terrestrial C-3 plants. The delta C-13 values of Cannabis from Australia, Papua New Guinea and Thailand ranged from -36 to -25 parts per thousand, and delta N-15 values ranged from -1.0 to 15.8 parts per thousand. The stable isotope content did not allow differentiation between Cannabis originating from the three countries, but delta C-13 values of plantation-grown Cannabis differed between well-watered plants (average delta C-13 of -30.0 parts per thousand) and plants that had received little irrigation (average delta C-13 of -26.4 parts per thousand). Cannabis grown under controlled conditions had delta C-13 values of -32.6 and -30.6 parts per thousand with high and low water supply, respectively. These results indicate that water availability determines leaf C-13 in plants grown under similar conditions of light, temperature and air humidity. The delta C-13 values also distinguished between indoor- and outdoor-grown Cannabis; indoor- grown plants had overall more negative delta C-13 values (average -31.8 parts per thousand) than outdoor-grown plants (average -27.9 parts per thousand). Contributing to the strong C-13-depletion of indoor- grown plants may be high relative humidity, poor ventilation and recycling of C-13-depleted respired CO2. Mineral fertilizers had mostly lower delta N-15 values (-0.2 to 2.2 parts per thousand) than manure-based fertilizers (7.6 to 22.7 parts per thousand). It was possible to link delta N-15 values of fertilizers associated with a crop site to soil and plant delta N-15 values. The strong relationship between soil, fertilizer, and plant delta N-15 suggests that Cannabis delta N-15 is determined by the isotopic composition of the nitrogen source. The distinct delta N-15 values measured in Cannabis crops make delta N-15 an excellent tool for matching seized Cannabis with a source crop. A case study is presented that demonstrates how delta C-13 and delta N-15 values can be used as a forensic tool.
Resumo:
Carbon isotope composition (delta C-13), oxygen isotope composition (delta O-18), and nitrogen concentration (N-mass) of branchlet tissue at two canopy positions were assessed for glasshouse seedlings and 9-year-old hoop pine (Araucaria cunninghamii Ait. ex D. Don) trees from 22 open-pollinated families grown in 5 blocks of a progeny test at a water-limited and nitrogen-deficient site in southeastern Queensland, Australia. Significant variations in canopy delta C-13, delta O-18, and N-mass existed among the 9-year-old hoop pine families, with a heritability estimate of 0.72 for branchlet delta C-13 from the upper inner canopy position. There was significant variation in canopy delta C-13 of glasshouse seedlings between canopy positions and among the families, with a heritability estimate of 0.66. The canopy delta C-13 was positively related to canopy N-mass only for the upper outer crown in the field (R = 0.62, p < 0.001). Phenotypic correlations existed between tree height and canopy delta C-13 (R = 0.37-0.41, p < 0.001). Strong correlations were found between family canopy delta C-13 at this site and those at a wetter site and between field canopy delta C-13 and glasshouse seedling delta C-13. The mechanisms of the variation in canopy delta C-13 are discussed in relation to canopy photosynthetic capacity as reflected in the N-mass and stomatal conductance as indexed by canopy delta O-18.
Resumo:
This paper reports a study in the wet tropics of Queensland on the fate of urea applied to a dry or wet soil surface under banana plants. The transformations of urea were followed in cylindrical microplots (10.3 cm diameter x 23 cm long), a nitrogen (N) balance was conducted in macroplots (3.85 m x 2.0 m) with N-15 labelled urea, and ammonia volatilization was determined with a mass balance micrometeorological method. Most of the urea was hydrolysed within 4 days irrespective of whether the urea was applied onto dry or wet soil. The nitrification rate was slow at the beginning when the soil was dry, but increased greatly after small amounts of rain; in the 9 days after rain 20% of the N applied was converted to nitrate. In the 40 days between urea application and harvesting, the macroplots the banana plants absorbed only 15% of the applied N; at harvest the largest amounts were found in the leaves (3.4%), pseudostem (3.3%) and fruit (2.8%). Only 1% of the applied N was present in the roots. Sixty percent of the applied N was recovered in the soil and 25% was lost from the plant-soil system by either ammonia volatilization, leaching or denitrification. Direct measurements of ammonia volatilization showed that when urea was applied to dry soil, and only small amounts of rain were received, little ammonia was lost (3.2% of applied N). In contrast, when urea was applied onto wet soil, urea hydrolysis occurred immediately, ammonia was volatilized on day zero, and 17.2% of the applied N was lost by the ninth day after that application. In the latter study, although rain fell every day, the extensive canopy of banana plants reduced the rainfall reaching the fertilized area under the bananas to less than half. Thus even though 90 mm of rain fell during the volatilization study, the fertilized area did not receive sufficient water to wash the urea into the soil and prevent ammonia loss. Losses by leaching and denitrification combined amounted to 5% of the applied N.