868 resultados para high carbon tool steel
Resumo:
Isotope screening is a simple and cheap test for determining the photosynthetic pathway used by plants. The scope of this work was to classify the photosynthetic type of Melissa officinalis L. and Cymbopogon citratus [DC.] Stapf, through studies of the carbon isotope composition (δ13 C), and we are proposing the use of carbon isotope composition results as a tool to control the quality of medicinal plants. For studies of δ 13C (13 C% = [R (sample)/R (standard) - 1] × 10 -3), dried, powdered leaves were analyzed in a mass spectrometer coupled with an elemental analyzer for determining the ratio R (R = 13CO2/12CO2). As results, M. officinalis presented a C3 photosynthetic type, and C. citratus presented a C4 photosynthetic type. The carbon isotope composition from this study can be used as quality control of M. officinalis adulterants.
Resumo:
The aim of the work was to prepare an overview about the microstructures present in high-speed steel, focused on the crystallography of the carbides. High-speed steels are currently obtained by casting, powder metallurgy and more recently spray forming. High-speed steels have a high hardness resulting from a microstructure, which consists of a steel matrix (martensite and ferrite), in which embedded carbides of different crystal structure, chemical composition, morphology and size, exist. These carbides are commonly named MxC, where M represents one or more metallic atoms. These carbides can be identified by X-ray diffraction considering M as a unique metallic atom. In this work, it is discussed, in basis of the first principles of physics crystallography, the validation of this identification when it is considered that other atoms in the structure are substitutional. Further, it is discussed some requirements for data acquisition that allows the Rietveld refinement to be applied on carbide crystallography and phase amount determination.
Resumo:
This paper presents specific cutting energy measurements as a function of the cutting speed and tool cutting edge geometry. The experimental work was carried out on a vertical CNC machining center with 7,500 rpm spindle rotation and 7.5 kW power. Hardened steels ASTM H13 (50 HRC) were machined at conventional cutting speed and high-speed cutting (HSC). TiN coated carbides with seven different geometries of chip breaker were applied on dry tests. A special milling tool holder with only one cutting edge was developed and the machining forces needed to calculate the specific cutting energy were recorded using a piezoelectric 4-component dynamometer. Workpiece roughness and chip formation process were also evaluated. The results showed that the specific cutting energy decreased 15.5% when cutting speed was increased up to 700%. An increase of 1 °in tool chip breaker chamfer angle lead to a reduction in the specific cutting energy about 13.7% and 28.6% when machining at HSC and conventional cutting speed respectively. Furthermore the workpiece roughness values evaluated in all test conditions were very low, closer to those of typical grinding operations (∼0.20 μm). Probable adiabatic shear occurred on chip segmentation at HSC Copyright © 2007 by ABCM.
Resumo:
Electrochemical impedance spectroscopy measurements using two carbon steel electrodes in soybean biodiesel medium, produced by methylic route, were performed in an electrochemical cell that allows positioning the two electrodes face-to-face. To retain the biodiesel between the electrodes and prevent its leakage a porous membrane soaked in biodiesel was used. The amplitude of the AC potential and the area of the electrodes were varied. The linearity between disturbance and response signals was observed for tests when the amplitude of the AC potential was lower than 1500 mV (rms). The electrical resistance of biodiesel dominates the global response and carbon steel presents low corrosion, which is observed only at low frequency, and was confirmed by chemical tests performed in the membrane. In conclusion the electrical resistance of biodiesel can be estimated using electrochemical impedance spectroscopy with two electrodes set up. ©The Electrochemical Society.
Resumo:
In this study, different methods of cutting fluid application are used in turning of a difficult-to-machine steel (SAE EV-8). Initially, a semisynthetic cutting fluid was applied using a conventional method (i.e. overhead flood cooling), minimum quantity of cutting fluid, and pulverization. A lubricant of vegetable oil (minimum quantity of lubricant) was also applied using the minimum quantity method. Thereafter, a cutting fluid jet under high pressure (3.0 MPa) was singly applied in the following regions: chip-tool interface, top surface of the chip (between workpiece and chip) and tool-workpiece contact. Moreover, two other methods were used: an interflow between conventional application and chip-tool interface jet (combined method) and, finally, three jets simultaneously applied. In order to carry out these tests, it was necessary to set up a high-pressure system using a piston pump for generating a cutting fluid jet, a venturi for fluid application (minimum quantity of cutting fluid and minimum quantity of lubricant) and a nozzle for cutting fluid pulverization. The output variables analyzed included tool life, surface roughness, cutting tool temperature, cutting force, chip form, chip compression rate and machined specimen microstructure. Among the results, it can be observed that the tool life increases and the cutting force decreases with the application of cutting fluid jet, mainly when it is directed to the chip-tool interface. Excluding the methods involving jet fluid, the conventional method seems to be more efficient than other methods of low pressure, such as minimum quantity of volume and pulverization, when considering just the cutting tool wear. © 2013 IMechE.
Resumo:
Different methods of cutting fluid application are used on turning of a difficult-tomachine steel (SAE EV-8). A semi-synthetic cutting fluid was applied using a conventional method, minimum quantity of cutting fluid (MQCF), and pulverization. By the minimum quantity method was also applied a lubricant of vegetable oil (MQL). Thereafter, a cutting fluid jet under high pressure (3.0 MPa) was singly applied in the following regions: chip-tool interface; top surface of the chip; and tool-workpiece contact. Two other methods were used: an interflow between conventional application and chip-tool interface jet and, finally, three jets simultaneously applied. In order to carry out these tests, it was necessary to set up a high pressure system using a piston pump for generating a cutting fluid jet, a Venturi for fluid application (MQCF and MQL), and a nozzle for cutting fluid pulverization. The output variables analyzed included tool life, surface roughness, cutting tool temperature, cutting force, chip form, chip compression rate and machined specimen microstructure. It can be observed that the tool life increases and the cutting force decreases with the application of cutting fluid jet, mainly when it is directed to the chip-tool interface. Excluding the methods involving jet fluid, the conventional method seems to be more efficient than other methods of low pressure. © (2013) Trans Tech Publications, Switzerland.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Equilíbrio líquido-vapor do sistema destilado ácido do óleo de palma-dióxido de carbono a alta pressão. Foi investigado experimentalmente o equilíbrio líquido-vapor para o sistema Destilado Ácido de Óleo de Palma (PFAD)/Dióxido de Carbono, nas temperaturas de 333, 353 e 373 K e pressões de 20, 23, 26 e 29 MPa, usando-se o método estático. Os dados experimentais do sistema pseudo-binário PFAD/CO2 foram correlacionados com a equação de estado de Redlich-Kwong do pacote computacional ASPEN. O modelo reproduz bem os resultados experimentais. A seletividade obtida indica que o CO2 supercrítico é um solvente razoável para a separação em coluna multi-estágio e contínua, do ácido graxo saturado (ácido palmítico) daqueles insaturados (ácido oleico e ácido linoleico) contidos no PFAD.
Resumo:
Bacterial cellulose (BC) has established to be a remarkably versatile biomaterial and can be used in wide variety of applied scientific endeavors, especially for medical devices. In fact, biomedical devices recently have gained a significant amount of attention because of increased interesting tissue-engineered products for both wound care and the regeneration of damaged or diseased organs. The architecture of BC materials can be engineered over length scales ranging from nano to macro by controlling the biofabrication process, besides, surface modifications bring a vital role in in vivo performance of biomaterials. In this work, bacterial cellulose fermentation was modified with carbon nanotubes for sensor applications and diseases diagnostic. SEM images showed that polymer modified-carbon nanotube (PVOH-carbon nanotube) produced well dispersed system and without agglomeration. Influences of carbon nanotube in bacterial cellulose were analyzed by FTIR. TGA showed higher thermal properties of developed bionanocomposites.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)