982 resultados para ge-dependent branching processes
Resumo:
Most empirical studies support a decline in speciation rates through time, although evidence for constant speciation rates also exists. Declining rates have been explained by invoking pre-existing niches, whereas constant rates have been attributed to non-adaptive processes such as sexual selection and mutation. Trends in speciation rate and the processes underlying it remain unclear, representing a critical information gap in understanding patterns of global diversity. Here we show that the temporal trend in the speciation rate can also be explained by frequency-dependent selection. We construct a frequency-dependent and DNA sequence-based model of speciation. We compare our model to empirical diversity patterns observed for cichlid fish and Darwin's finches, two classic systems for which speciation rates and richness data exist. Negative frequency-dependent selection predicts well both the declining speciation rate found in cichlid fish and explains their species richness. For groups like the Darwin's finches, in which speciation rates are constant and diversity is lower, speciation rate is better explained by a model without frequency-dependent selection. Our analysis shows that differences in diversity may be driven by incipient species abundance with frequency-dependent selection. Our results demonstrate that genetic-distance-based speciation and frequency-dependent selection are sufficient to explain the high diversity observed in natural systems and, importantly, predict decay through time in speciation rate in the absence of pre-existing niches.
Resumo:
Ca$\sp{++}$/calmodulin-dependent protein kinase II (CaM-KII) is highly concentrated in mammalian brain, comprising as much as 2% of the total protein in some regions. In forebrain, CaM-KII has been shown to be enriched in postsynaptic structures where it has been implicated in maintaining cytoskeletal structure, and more recently in signal transduction mechanisms and processes underlying learning and memory. CaM-KII appears to exist as a holoenzyme composed of two related yet distinct subunits, alpha and beta. The ratio of the subunits in the holoenzyme varies with different brain regions and to some degree with subcellular fractions. The two subunits also display distinct developmental profiles. Levels of alpha subunit are not evident at birth but increase dramatically during postnatal development, while levels of beta subunit are readily detected at birth and only gradual increase postnatally. The distinct regional, subcellular and developmental distribution of the two subunits of CaM-KII have prompted us to examine factors involved in regulating the synthesis of the subunit proteins.^ This dissertation addresses the regional and developmental expression of the mRNAs for the individual subunits using in situ hybridization histochemistry and northern slot-blot analysis. By comparing the developmental profile of each mRNA with that of its respective protein, we have determined that initiation of gene transcription is likely the primary site for regulating CaM-KII protein levels. Furthermore, the distinct cytoarchitecture of the hippocampus has allowed us to demonstrate that the alpha, but not beta subunit mRNA is localized in dendrites of certain forebrain neurons. The localization of alpha subunit mRNA at postsynaptic structures, in concert with the accumulation of subunit protein, suggests that dendritic synthesis of CaM-KII alpha subunit may be important for maintaining postsynaptic structure and/or function. ^
Resumo:
Human up-frameshift 1 (UPF1) is an ATP-dependent RNA helicase and phosphoprotein implicated in several biological processes but is best known for its key function in nonsense-mediated mRNA decay (NMD). Here we employed a combination of stable isotope labeling of amino acids in cell culture experiments to determine by quantitative proteomics UPF1 interactors. We used this approach to distinguish between RNA-mediated and protein-mediated UPF1 interactors and to determine proteins that preferentially bind the hypo- or the hyper-phosphorylated form of UPF1. Confirming and expanding previous studies, we identified the eukaryotic initiation factor 3 (eIF3) as a prominent protein-mediated interactor of UPF1. However, unlike previously reported, eIF3 binds to UPF1 independently of UPF1’s phosphorylation state. Furthermore, our data revealed many nucleus-associated RNA-binding proteins that preferentially associate with hyper-phosphorylated UPF1 in an RNase-sensitive manner, suggesting that UPF1 gets recruited to mRNA and becomes phosphorylated before being exported to the cytoplasm as part of the mRNP.
Resumo:
Due to the ongoing trend towards increased product variety, fast-moving consumer goods such as food and beverages, pharmaceuticals, and chemicals are typically manufactured through so-called make-and-pack processes. These processes consist of a make stage, a pack stage, and intermediate storage facilities that decouple these two stages. In operations scheduling, complex technological constraints must be considered, e.g., non-identical parallel processing units, sequence-dependent changeovers, batch splitting, no-wait restrictions, material transfer times, minimum storage times, and finite storage capacity. The short-term scheduling problem is to compute a production schedule such that a given demand for products is fulfilled, all technological constraints are met, and the production makespan is minimised. A production schedule typically comprises 500–1500 operations. Due to the problem size and complexity of the technological constraints, the performance of known mixed-integer linear programming (MILP) formulations and heuristic approaches is often insufficient. We present a hybrid method consisting of three phases. First, the set of operations is divided into several subsets. Second, these subsets are iteratively scheduled using a generic and flexible MILP formulation. Third, a novel critical path-based improvement procedure is applied to the resulting schedule. We develop several strategies for the integration of the MILP model into this heuristic framework. Using these strategies, high-quality feasible solutions to large-scale instances can be obtained within reasonable CPU times using standard optimisation software. We have applied the proposed hybrid method to a set of industrial problem instances and found that the method outperforms state-of-the-art methods.
Resumo:
External circumstances and internal bodily states often change and require organisms to flexibly adapt valuation processes to select the optimal action in a given context. Here, we investigate the neurobiology of context-dependent valuation in 22 human subjects using functional magnetic resonance imaging. Subjects made binary choices between visual stimuli with three attributes (shape, color, and pattern) that were associated with monetary values. Context changes required subjects to deviate from the default shape valuation and to integrate a second attribute in order to comply with the goal to maximize rewards. Critically, this binary choice task did not involve any conflict between opposing monetary, temporal, or social preferences. We tested the hypothesis that interactions between regions of dorsolateral and ventromedial prefrontal cortex (dlPFC; vmPFC) implicated in self-control choices would also underlie the more general function of context-dependent valuation. Consistent with this idea, we found that the degree to which stimulus attributes were reflected in vmPFC activity varied as a function of context. In addition, activity in dlPFC increased when context changes required a reweighting of stimulus attribute values. Moreover, the strength of the functional connectivity between dlPFC and vmPFC was associated with the degree of context-specific attribute valuation in vmPFC at the time of choice. Our findings suggest that functional interactions between dlPFC and vmPFC are a key aspect of context-dependent valuation and that the role of this network during choices that require self-control to adjudicate between competing outcome preferences is a specific application of this more general neural mechanism.
Resumo:
Introduction Recruiting and retaining volunteers who are prepared to make a long-term commitment is a major problem for Swiss sports clubs. With the inclusion of external counselling for the change and systematisation of volunteer management, sports clubs have a possibility to develop and defuse problems in spite of existing barriers and gaps in knowledge. To what extent is external counselling for personnel problems effective? It is often observed that standardised counselling inputs lead to varying consequences for sports clubs. It can be assumed that external impulses are interpreted and transformed differently into the workings of the club. However, this cannot be solely attributed to the situational or structural conditions of the clubs. It is also important to consider the underlying decision-making processes of a club. According to Luhmann’s organisational sociological considerations (2000), organisations (sports clubs) have to be viewed as social systems consisting of (communicated) decisions. This means that organisations are continually reproduced by decision-making processes. All other (observable) factors such as an organisation’s goals, recruiting strategies, support schemes for volunteers etc., have to be seen as an outcome of the operation of prior organisational decisions. Therefore: How do decision-making processes in sports clubs work in the context of the implementation of external counselling? Theoretical Framework An examination of the actual situation in sports clubs shows that decisions frequently appear to be shaped by inconsistency, unexpected outcomes, and randomness (Amis & Slack, 2003). Therefore, it must be emphasised that these decisions cannot be analysed according to any rational decision-making model. Their specific structural characteristics only permit a limited degree of rationality – bounded rationality. Non-profit organisations in particular are shaped by a specific mode of decisionmaking that Cohen, March, and Olsen (1972) have called the “garbage can model”. As sport clubs can also be conceived as “organised anarchies”, this model seems to offer an appropriate approach to understanding their practices and analysing their decision-making processes. The key concept in the garbage can model is the assumption that decision-making processes in organisations consist of four “streams”: (a) problems, (b) actors, (c) decision-making opportunities, and (d) solutions. Method Before presenting the method of the analysis of the decision-making processes in sports clubs, the external counselling will be described. The basis of the counselling is generated by a sports clubs’ capability to change. Due to the specific structural characteristics and organisational principles, change processes in sports clubs often merge with barriers and restrictions. These need to be considered when developing counselling guidelines for a successful planning and realisation of change processes. Furthermore, important aspects of personnel management in sports clubs and especially volunteer management must be implied in order to elaborate key elements for the counselling to recruit new volunteers (e.g., approach, expectations). A counselling of four system-counselling workshops was conceptualised by considering these specific characteristics. The decision-making processes in the sports clubs were analysed during the counselling and the implementation process. A case study is designed with the appropriate methodological approach for such explorative research. The approach adopted for these single case analyses was oriented toward the research program of behavioural decision-making theory (garbage can model). This posits that in-depth insights into organisational decision-making processes can only be gained through relevant case studies of existing organisational situations (Skille, 2013). Before, during and after the intervention, questionnaires and guided interviews were conducted with the project teams of the twelve par-ticipating football clubs to assess the different components of the “streams” in the context of external counselling. These interviews have been analysed using content analysis following guidelines as for-mulated by Mayring (2010). Results The findings show that decision-making processes in football clubs occur differently in the context of external counselling. Different initial positions and problems are the triggers for these decision-making processes. Furthermore, the implementation of the solutions and the external counselling is highly dependent on the commitment of certain people as central players within the decision-mak-ing process. The importance of these relationships is confirmed by previous findings in regard to decision-making and change processes in sports clubs. The decision-making processes in sports clubs can be theoretically analysed using behavioural decision-making theory and the “garbage can model”. Bounded rationality characterises all “streams” of the decision-making processes. Moreo-ver, the decision-making process of the football clubs can be well illustrated in the framework, and the interplay of the different dimensions illustrates the different decision-making practices within the football clubs. References Amis, J., & Slack, T. (2003). Analysing sports organisations: Theory and practice. In B. Houlihan (Eds.), Sport & Society (pp. 201–217). London, England: Sage. Cohen, M.D., March, J.G., & Olsen, J.P. (1972). A garbage can model of organisational choice. Ad-ministrative Science Quarterly, 17, 1-25. Luhmann, N. (2000). Organisation und Entscheidung. Opladen: Westdeutscher Verlag. Mayring, P. (2010). Qualitative Inhaltsanalyse. Grundlagen und Techniken. Weinheim: Beltz. Skille, E. Å. (2013). Case study research in sport management: A reflection upon the theory of science and an empirical example. In S. Söderman & H. Dolles (Eds.), Handbook of research on sport and business (pp. 161–175). Cheltenham, England: Edward Elgar.
Resumo:
BACKGROUND Receptor activator of NF-κB ligand (RANKL) is expressed as either surface (hRANKL1, hRANKL2) or soluble (hRANKL3) form. RANKL is involved in multifaceted processes of immunoregulation and bone resorption such as they occur in rheumatoid arthritis (RA). Interestingly, activated basophils, which are effector cells in allergic inflammation, contribute to the progress of collagen-induced arthritis (CIA), a mouse model for RA. Here, we investigate under which conditions human basophils express RANKL. METHODS Among other stimuli, basophils were cultured with IL-3 alone. Alternatively, as a secondary stimulus, IgER-dependent or IgER-independent agents were added simultaneously either with IL-3 or after prolonged IL-3 culturing. Expression of RANKL protein and mRNA was analyzed by flow cytometry, ELISA, and real-time PCR. A coculture system was applied to investigate biological activity of basophil-derived RANKL. RESULTS We show that in human basophils, IL-3 but no other stimulus induces de novo expression of soluble and surface RANKL, of which the latter enhances survival of MoDC. Upon simultaneous stimulation, IgER cross-linking reduces surface RANKL expression, while IgER-independent stimuli have no effect. This is in contrast to consecutive stimulation, as triggering with both IgER-dependent and IgER-independent stimuli enhances RANKL expression, particularly in its soluble form. Real-time PCR analysis shows that RANKL expression is mainly regulated at the mRNA level. CONCLUSION This study identifies IL-3 as a potent inducer of RANKL expression in human basophils, suggesting them to interact with bone physiology and activation of immune cells. IgER-dependent and IgER-independent stimuli modulate the IL-3-mediated RANKL expression in a time- and stimulus-dependent fashion.
Resumo:
Inhibition of the net photosynthetic CO2 assimilation rate (Pn) by high temperature was examined in oak (Quercus pubescens L.) leaves grown under natural conditions. Combined measurements of gas exchange and chlorophyll (Chl) a fluorescence were employed to differentiate between inhibition originating from heat effects on components of the thylakoid membranes and that resulting from effects on photosynthetic carbon metabolism. Regardless of whether temperature was increased rapidly or gradually, Pn decreased with increasing leaf temperature and was more than 90% reduced at 45 °C as compared to 25 °C. Inhibition of Pn by heat stress did not result from reduced stomatal conductance (gs), as heat-induced reduction of gs was accompanied by an increase of the intercellular CO2 concentration (Ci). Chl a fluorescence measurements revealed that between 25 and 45 °C heat-dependent alterations of thylakoid-associated processes contributed only marginally, if at all, to the inhibition of Pn by heat stress, with photosystem II being remarkably well protected against thermal inactivation. The activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) decreased from about 90% at 25 °C to less than 30% at 45 °C. Heat stress did not affect Rubisco per se, since full activity could be restored by incubation with CO2 and Mg2+. Western-blot analysis of leaf extracts disclosed the presence of two Rubisco activase polypeptides, but heat stress did not alter the profile of the activase bands. Inhibition of Pn at high leaf temperature could be markedly reduced by artificially increasing Ci. A high Ci also stimulated photosynthetic electron transport and resulted in reduced non-photochemical fluorescence quenching. Recovery experiments showed that heat-dependent inhibition of Pn was largely, if not fully, reversible. The present results demonstrate that in Q. pubescens leaves the thylakoid membranes in general and photosynthetic electron transport in particular were well protected against heat-induced perturbations and that inhibition of Pn by high temperature closely correlated with a reversible heat-dependent reduction of the Rubisco activation state.
Resumo:
Optimal adjustment of brain networks allows the biased processing of information in response to the demand of environments and is therefore prerequisite for adaptive behaviour. It is widely shown that a biased state of networks is associated with a particular cognitive process. However, those associations were identified by backward categorization of trials and cannot provide a causal association with cognitive processes. This problem still remains a big obstacle to advance the state of our field in particular human cognitive neuroscience. In my talk, I will present two approaches to address the causal relationships between brain network interactions and behaviour. Firstly, we combined connectivity analysis of fMRI data and a machine leaning method to predict inter-individual differences of behaviour and responsiveness to environmental demands. The connectivity-based classification approach outperforms local activation-based classification analysis, suggesting that interactions in brain networks carry information of instantaneous cognitive processes. Secondly, we have recently established a brand new method combining transcranial alternating current stimulation (tACS), transcranial magnetic stimulation (TMS), and EEG. We use the method to measure signal transmission between brain areas while introducing extrinsic oscillatory brain activity and to study causal association between oscillatory activity and behaviour. We show that phase-matched oscillatory activity creates the phase-dependent modulation of signal transmission between brain areas, while phase-shifted oscillatory activity blunts the phase-dependent modulation. The results suggest that phase coherence between brain areas plays a cardinal role in signal transmission in the brain networks. In sum, I argue that causal approaches will provide more concreate backbones to cognitive neuroscience.
Resumo:
Several theories assume that successful team coordination is partly based on knowledge that helps anticipating individual contributions necessary in a situational task. It has been argued that a more ecological perspective needs to be considered in contexts evolving dynamically and unpredictably. In football, defensive plays are usually coordinated according to strategic concepts spanning all members and large areas of the playfield. On the other hand, fewer people are involved in offensive plays as these are less projectable and strongly constrained by ecological characteristics. The aim of this study is to test the effects of ecological constraints and player knowledge on decision making in offensive game scenarios. It is hypothesized that both knowledge about team members and situational constraints will influence decisional processes. Effects of situational constraints are expected to be of higher magnitude. Two teams playing in the fourth league of the Swiss Football Federation participate in the study. Forty customized game scenarios were developed based on the coaches’ information about player positions and game strategies. Each player was shown in ball possession four times. Participants were asked to take the perspective of the player on the ball and to choose a passing destination and a recipient. Participants then rated domain specific strengths (e.g., technical skills, game intelligence) of each of their teammates. Multilevel models for categorical dependent variables (team members) will be specified. Player knowledge (rated skills) and ecological constraints (operationalized as each players’ proximity and availability for ball reception) are included as predictor variables. Data are currently being collected. Results will yield effects of parameters that are stable across situations as well as of variable parameters that are bound to situational context. These will enable insight into the degree to which ecological constraints and more enduring team knowledge are involved in decisional processes aimed at coordinating interpersonal action.
Resumo:
Most studies of p53 function have focused on genes transactivated by p53. It is less widely appreciated that p53 can repress target genes to affect a particular cellular response. There is evidence that repression is important for p53-induced apoptosis and cell cycle arrest. It is less clear if repression is important for other p53 functions. A comprehensive knowledge of the genes repressed by p53 and the cellular processes they affect is currently lacking. We used an expression profiling strategy to identify p53-responsive genes following adenoviral p53 gene transfer (Ad-p53) in PC3 prostate cancer cells. A total of 111 genes represented on the Affymetrix U133A microarray were repressed more than two fold (p ≤ 0.05) by p53. An objective assessment of array data quality was carried out using RT-PCR of 20 randomly selected genes. We estimate a confirmation rate of >95.5% for the complete data set. Functional over-representation analysis was used to identify cellular processes potentially affected by p53-mediated repression. Cell cycle regulatory genes exhibited significant enrichment (p ≤ 5E-28) within the repressed targets. Several of these genes are repressed in a p53-dependent manner following DNA damage, but preceding cell cycle arrest. These findings identify novel p53-repressed targets and indicate that p53-induced cell cycle arrest is a function of not only the transactivation of cell cycle inhibitors (e.g., p21), but also the repression of targets that act at each phase of the cell cycle. The mechanism of repression of this set of p53 targets was investigated. Most of the repressed genes identified here do not harbor consensus p53 DNA binding sites but do contain binding sites for E2F transcription factors. We demonstrate a role for E2F/RB repressor complexes in our system. Importantly, p53 is found at the promoter of CDC25A. CDC25A protein is rapidly degraded in response to DNA damage. Our group has demonstrated for the first time that CDC25A is also repressed at the transcript level by p53. This work has important implications for understanding the DNA damage cell cycle checkpoint response and the link between E2F/RB complexes and p53 in the repression of target genes. ^
Resumo:
This project is based on secondary analyses of data collected in Starr County, Texas from 1981 till 1991 to determine the prevalence, incidence and risk factors for macular edema in Hispanics with non-insulin-dependent diabetes in Starr County, Texas. Two studies were conducted. The first study examined the prevalence of macular edema in this population. Of the 310 diabetics that were included in the study 22 had macular edema. Of these 22 individuals 9 had clinically significant macular edema. Fasting blood glucose was found to be significantly associated with macular edema. For each 10 mg/dl increase in fasting blood glucose there was a 1.07 probability of an increase in the risk of having macular edema. Individuals with fasting blood glucose $\ge$200 mg/dl were found to be more than three times at risk of having macular edema compared to those with fasting blood glucose $<$200 mg/dl.^ In the second study the incidence and the risk factors that could cause macular edema in this Hispanic population were examined. 240 Hispanics with non-insulin-dependent diabetes mellitus and without macular edema were followed for 1223 person-years. During the follow-up period 27 individuals developed macular edema (2.21/100 person-years). High fasting blood glucose and glycosylated hemoglobin were found to be strong and independent risk factors for macular edema. Participants taking insulin were 3.9 times more at risk of developing macular edema compared to those not taking insulin. Systolic blood pressure was significantly related to macular edema, where each 10 mmHg increase in systolic blood pressure was associated with a 1.3 increase in the risk of macular edema.^ In summary, this study suggests that hyperglycemia is the main underlying factor for retinal pathological changes in this diabetic population, and that macular edema probably is not the result of sudden change in the blood glucose level. It also determined that changes in blood pressure, particularly systolic blood pressure, could trigger the development of macular edema.^ Based on the prevalence reported in this study, it is estimated that 35,500 Hispanic diabetics in the US have macular edema. This imposes a major public health challenge particularly in areas with high concentration of Mexican Americans. It also highlights the importance of public health measures directed to Mexican Americans such as health education, improved access to medical care, and periodic and careful ophthalmologic examination by ophthalmologists knowledgeable and experienced in the management of diabetic macular edema. ^
Resumo:
The female reproductive tract (FRT) develops midway through embryogenesis, and consists of oviducts, uterine horns, cervix and upper part of the vagina. The uterine horns are composed of an epithelial layer, luminal (LE) and glandular epithelium (GE), surrounded by a mesenchymal layer, the stroma and myometrium. Interestingly, in most mammals the GE forms after birth and it only becomes fully differentiated as the female reaches sexual maturity. Uterine glands (UG) are made up of GE and are present in all mammals. They secrete nutrients, cytokines and several other proteins, termed histotroph, that are necessary for embryo implantation and development. Experiments in ewes and mice have revealed that females who lack UGs are infertile mainly due to impaired implantation and early pregnancy loss, suggesting that UGs are essential for fertility. Fortunately for us, UGs develop after birth allowing us to peer into the genetic mechanism of tubulogenesis and branching morphogenesis; two processes that are disrupted in various adenocarcinomas (cancer derived from glands). We created 3D replicas of the epithelium lining the FRT using optical projection tomography and characterized UG development in mice using lineagetracing experiments. Our findings indicate that mouse UGs develop as simple tubular structures and later grow multiple secretory units that stem from the main duct. The main aim of this project was to study the role of SOX9 in the UGs. Preliminary studies revealed that Sox9 is mostly found in the nucleus of the GE. vii This observation led to the hypothesis that Sox9 plays a role in the formation and/or differentiation of the GE. To study the role of Sox9 in UGs differentiation, we conditionally knocked out and overexpressed Sox9 in both the LE and GE using the progesterone receptor (Pgr) promoter. Overexpressing Sox9 in the uterine epithelium, parts of the stroma, and myometrium led to formation of multiple cystic structures inside the endometrium. Histological analysis revealed that these structures appeared morphologically similar to structures present in histological tissue sections obtained from patients with endometrial polyps. We have accounted for the presence of simple and complex hyperplasia with atypia, metaplasia, thick-walled blood vessels, and stromal fibrosis; all “hallmarks” that indicate overexpressing Sox9 leads to development of a polyp-like morphology. Therefore, we can propose the use of Sox9-cOE mice to study development of endometrial cystic lesions and disease progression into hyperplastic lesions.
Resumo:
Three approaches were used to examine the role of Ca$\sp{2+}$- and/or calmodulin (CaM)-regulated processes in the mammalian heat stress response. The focus of the first approach was on the major Ca$\sp{2+}$-binding protein, CaM, and involved the use of CaM antagonists that perturbed CaM-regulated processes during heat stress. The second approach involved the use of a cell line and its BPV-1 transformants that express increased basal levels of CaM, or parvalbumin--a Ca$\sp{2+}$-binding protein not normally found in these cells. The last approach used Ca$\sp{2+}$ chelators to buffer Ca$\sp{2+}$-transients.^ The principle conclusions resulting from these three experimental approaches are: (1) CaM antagonists cause a temperature-dependent potentiation of heat killing, but do not inhibit the triggering and development of thermotolerance suggesting some targets for heat killing are different from those that lead to thermotolerance; (2) Members of major HSP families (especially HSP70) can bind to CaM in a Ca$\sp{2+}$-dependent manner in vitro, and HSP have been associated with events leading to thermotolerance. But, because thermotolerance is not affected by CaM antagonists, and antagonists should interfere with HSP binding to CaM, the events leading to triggering or developing thermotolerance were not strongly dependent on HSP binding to CaM; (3) CaM antagonists can also bind to HSP70 (and possibly other HSP) suggesting an alternative mechanism for the action of these agents in heat killing may involve direct binding to other proteins, like HSP70, whose function is important for survival following heating and inhibiting their activity; and (4) The signal governing the rate of synthesis of another major HSP group, the HSP26 family, can be largely abrogated by elevated Ca$\sp{2+}$-binding proteins or Ca$\sp{2+}$ chelators without significantly reducing survival or thermotolerance suggesting if the HSP26 family is involved in either end point, it may function in (Ca$\sp{2+}$) $\sb{\rm i}$ homeostasis. ^
Resumo:
Slowslip forms part of the spectrum of fault behaviour between stable creep and destructive earthquakes. Slow slip occurs near the boundaries of large earthquake rupture zones and may sometimes trigger fast earthquakes. It is thought to occur in faults comprised of rocks that strengthen under fast slip rates, preventing rupture as a normal earthquake, or on faults that have elevated pore-fluid pressures. However, the processes that control slow rupture and the relationship between slow and normal earthquakes are enigmatic. Here we use laboratory experiments to simulate faulting in natural rock samples taken from shallow parts of the Nankai subduction zone, Japan, where very low-frequency earthquakes - a form of slow slip - have been observed.We find that the fault rocks exhibit decreasing strength over millimetre-scale slip distances rather than weakening due to increasing velocity. However, the sizes of the slip nucleation patches in our laboratory simulations are similar to those expected for the very lowfrequency earthquakes observed in Nankai. We therefore suggest that this type of fault-weakening behaviour may generate slow earthquakes. Owing to the similarity between the expected behaviour of slow earthquakes based on our data, and that of normal earthquakes during nucleation, we suggest that some types of slow slip may represent prematurely arrested earthquakes.