967 resultados para fuzzy shape optimization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste artigo, são apresentados testes empíricos para a investigação de ocorrência de fenômenos de sobre-reação e sub-reação no mercado de ações brasileiro. Para esses testes, é proposto um modelo baseado na teoria de conjuntos Fuzzy, que possui forte relação com as heurísticas de representatividade e ancoramento, estabelecidas na teoria de finanças comportamentais. O modelo proposto é empregado para a formação de carteiras e utiliza indicadores financeiros de companhias abertas. Para as análises são utilizados dois conjuntos de ações, um do setor de petróleo e petroquímica e outro do setor têxtil, com indicadores financeiros relativos ao período de 1994 a 2005.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho desenvolve um novo modelo Fuzzy-DEA-Game (FDG) para apoiar o estabelecimento de estratégias de produção. Esse modelo combina a Análise Envoltória de Dados (DEA) com conceitos da Teoria dos Conjuntos Fuzzy e do Jogo da Barganha de Nash. O modelo permite uma avaliação da eficiência produtiva e econômica dos produtos, o que pode resultar num portfólio de produtos mais rentáveis e de interesse do mercado consumidor. O modelo foi aplicado em uma empresa do segmento de energia. Os resultados obtidos com a aplicação do modelo FDG mostraram-se aderentes à realidade da empresa estudada e forneceram metas para a redução dos níveis de recursos (entradas) necessários para a fabricação dos produtos e para aumento dos níveis de resultados (saídas) oriundos da comercialização desses produtos. Como resultado adicional importante, o modelo FDG permitiu a identificação dos produtos do portfólio que são mais sensíveis à ocorrência de incerteza.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Wind power prediction plays a key role in tackling these challenges. The contribution of this paper is to propose a new hybrid approach, combining particle swarm optimization and adaptive-network-based fuzzy inference system, for short-term wind power prediction in Portugal. Significant improvements regarding forecasting accuracy are attainable using the proposed approach, in comparison with the results obtained with five other approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A previously developed model is used to numerically simulate real clinical cases of the surgical correction of scoliosis. This model consists of one-dimensional finite elements with spatial deformation in which (i) the column is represented by its axis; (ii) the vertebrae are assumed to be rigid; and (iii) the deformability of the column is concentrated in springs that connect the successive rigid elements. The metallic rods used for the surgical correction are modeled by beam elements with linear elastic behavior. To obtain the forces at the connections between the metallic rods and the vertebrae geometrically, non-linear finite element analyses are performed. The tightening sequence determines the magnitude of the forces applied to the patient column, and it is desirable to keep those forces as small as possible. In this study, a Genetic Algorithm optimization is applied to this model in order to determine the sequence that minimizes the corrective forces applied during the surgery. This amounts to find the optimal permutation of integers 1, ... , n, n being the number of vertebrae involved. As such, we are faced with a combinatorial optimization problem isomorph to the Traveling Salesman Problem. The fitness evaluation requires one computing intensive Finite Element Analysis per candidate solution and, thus, a parallel implementation of the Genetic Algorithm is developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A package of B-spline finite strip models is developed for the linear analysis of piezolaminated plates and shells. This package is associated to a global optimization technique in order to enhance the performance of these types of structures, subjected to various types of objective functions and/or constraints, with discrete and continuous design variables. The models considered are based on a higher-order displacement field and one can apply them to the static, free vibration and buckling analyses of laminated adaptive structures with arbitrary lay-ups, loading and boundary conditions. Genetic algorithms, with either binary or floating point encoding of design variables, were considered to find optimal locations of piezoelectric actuators as well as to determine the best voltages applied to them in order to obtain a desired structure shape. These models provide an overall economy of computing effort for static and vibration problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A realização do presente trabalho teve como principais objectivos o desenvolvimento de espumas de poliuretano de um componente com propriedades de resistência à chama superiores (B1 & B2), aplicadas por pistola ou por adaptador/tubo e a optimização de uma espuma de poliuretano de um componente de inverno aplicada por pistola. Todo o trabalho desenvolvido está dividido em dois projectos distintos: i. O primeiro projecto consistiu em desenvolver espumas de um componente com propriedades de resistência à chama (classificadas como B1 e B2 de acordo com a norma alemã DIN 4102), aplicadas por pistola (GWB1 e GWB2) ou por adaptador/tubo (AWB), utilizando polióis poliésteres aromáticos modificados e aditivos retardantes de chama halogenados. Estas espumas deveriam apresentar também propriedades aceitáveis a baixas temperaturas. Após realizar várias formulações foi possível desenvolver uma espuma AWB2 com apenas 3,3% de poliol poliéster no pré-polímero e com propriedades equivalentes às da melhor espuma comercial mesmo a 5/-10 (temperatura da lata/cura da espuma em °C) e também com uma altura de chama de apenas 11 cm. A partir de duas formulações (AWB2) que passaram o Teste B2, foram obtidas também, uma espuma GWB2 e outra GWB1 com propriedades equivalentes às da melhor espuma da concorrência a -10/-10 e a 23/5, respectivamente, embora não tenham sido submetidas ao teste B2 e B1 após as modificações efectuadas. ii. O segundo projecto consistiu em optimizar uma espuma de poliuretano de um componente de inverno aplicada por pistola (GWB3). A espuma inicial tinha problemas de glass bubbles quando esta era dispensada a partir de uma lata cheia, sendo necessário ultrapassar este problema. Este problema foi resolvido diminuindo a razão de GPL/DME através do aumento da percentagem em volume de DME no pré-polímero para 14% no entanto, a estabilidade dimensional piorou um pouco. O reagente FCA 400 foi removido da formulação anterior (6925) numa tentativa de diminuir o custo da espuma, obtendo-se uma espuma aceitável a 23/23 e a 5/5, com uma redução de 4% no custo da produção e com uma redução de 5,5% no custo por litro de espuma dispensada, quando comparada com a sua antecessora. Por último, foi avaliada a influência da concentração de diferentes surfactantes na formulação 6925, verificando-se o melhoramento da estrutura celular da espuma para concentrções mais elevadas de surfactante, sendo este efeito mais notório a temperaturas mais baixas (5/5). Dos surfactantes estudados, o B 8871 mostrou o melhor desempenho a 5/5 com a concentração mais baixa, sendo portanto o melhor surfactante, enquanto o Struksilon 8003 demonstrou ser o menos adequado para esta formulação específica, apresentando piores resultados globais. Pode-se ainda acrescentar que os surfactantes L-5351, L-5352 e B 8526 também não são adequados para esta formulação uma vez que as espumas resultantes apresentam cell collapse, especialmente a 5/5. No caso dos surfactantes L-5351 e L-5352, esta propriedade piora com concentrações mais elevadas. Em cada projecto foram também efectuados testes de benchmark em determinadas espumas comerciais com o principal objectivo de comparar todos os resultados das espumas desenvolvidas, em ambos os projectos, com espumas da concorrência.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nos tempos actuais os equipamentos para Aquecimento Ventilação e Ar Condicionado (AVAC) ocupam um lugar de grande importância na concepção, desenvolvimento e manutenção de qualquer edifício por mais pequeno que este seja. Assim, surge a necessidade premente de racionalizar os consumos energéticos optimizando-os. A alta fiabilidade desejada nestes sistemas obriga-nos cada vez mais a descobrir formas de tornar a sua manutenção mais eficiente, pelo que é necessário prevenir de uma forma proactiva todas as falhas que possam prejudicar o bom desempenho destas instalações. Como tal, torna-se necessário detectar estas falhas/anomalias, sendo imprescíndivel que nos antecipemos a estes eventos prevendo o seu acontecimento num horizonte temporal pré-definido, permitindo actuar o mais cedo possível. É neste domínio que a presente dissertação tenta encontrar soluções para que a manutenção destes equipamentos aconteça de uma forma proactiva e o mais eficazmente possível. A ideia estruturante é a de tentar intervir ainda numa fase incipiente do problema, alterando o comportamento dos equipamentos monitorizados, de uma forma automática, com recursos a agentes inteligentes de diagnóstico de falhas. No caso em estudo tenta-se adaptar de forma automática o funcionamento de uma Unidade de Tratamento de Ar (UTA) aos desvios/anomalias detectadas, promovendo a paragem integral do sistema apenas como último recurso. A arquitectura aplicada baseia-se na utilização de técnicas de inteligência artificial, nomeadamente dos sistemas multiagente. O algoritmo utilizado e testado foi construído em Labview®, utilizando um kit de ferramentas de controlo inteligente para Labview®. O sistema proposto é validado através de um simulador com o qual se conseguem reproduzir as condições reais de funcionamento de uma UTA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is on the problem of short-term hydro scheduling, particularly concerning head-dependent reservoirs under competitive environment. We propose a new nonlinear optimization method to consider hydroelectric power generation as a function of water discharge and also of the head. Head-dependency is considered on short-term hydro scheduling in order to obtain more realistic and feasible results. The proposed method has been applied successfully to solve a case study based on one of the main Portuguese cascaded hydro systems, providing a higher profit at a negligible additional computation time in comparison with a linear optimization method that ignores head-dependency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a novel hybrid approach is proposed for electricity prices forecasting in a competitive market, considering a time horizon of 1 week. The proposed approach is based on the combination of particle swarm optimization and adaptive-network based fuzzy inference system. Results from a case study based on the electricity market of mainland Spain are presented. A thorough comparison is carried out, taking into account the results of previous publications, to demonstrate its effectiveness regarding forecasting accuracy and computation time. Finally, conclusions are duly drawn. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To introduce a fuzzy linguistic model for evaluating the risk of neonatal death. METHODS: The study is based on the fuzziness of the variables newborn birth weight and gestational age at delivery. The inference used was Mamdani's method. Neonatologists were interviewed to estimate the risk of neonatal death under certain conditions and to allow comparing their opinions and the model values. RESULTS: The results were compared with experts' opinions and the Fuzzy model was able to capture the expert knowledge with a strong correlation (r=0.96). CONCLUSIONS: The linguistic model was able to estimate the risk of neonatal death when compared to experts' performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a stochastic programming approach is proposed for trading wind energy in a market environment under uncertainty. Uncertainty in the energy market prices is the main cause of high volatility of profits achieved by power producers. The volatile and intermittent nature of wind energy represents another source of uncertainty. Hence, each uncertain parameter is modeled by scenarios, where each scenario represents a plausible realization of the uncertain parameters with an associated occurrence probability. Also, an appropriate risk measurement is considered. The proposed approach is applied on a realistic case study, based on a wind farm in Portugal. Finally, conclusions are duly drawn. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Hence, good forecasting tools play a key role in tackling these challenges. In this paper, an adaptive neuro-fuzzy inference approach is proposed for short-term wind power forecasting. Results from a real-world case study are presented. A thorough comparison is carried out, taking into account the results obtained with other approaches. Numerical results are presented and conclusions are duly drawn. (C) 2011 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In practical applications of optimization it is common to have several conflicting objective functions to optimize. Frequently, these functions are subject to noise or can be of black-box type, preventing the use of derivative-based techniques. We propose a novel multiobjective derivative-free methodology, calling it direct multisearch (DMS), which does not aggregate any of the objective functions. Our framework is inspired by the search/poll paradigm of direct-search methods of directional type and uses the concept of Pareto dominance to maintain a list of nondominated points (from which the new iterates or poll centers are chosen). The aim of our method is to generate as many points in the Pareto front as possible from the polling procedure itself, while keeping the whole framework general enough to accommodate other disseminating strategies, in particular, when using the (here also) optional search step. DMS generalizes to multiobjective optimization (MOO) all direct-search methods of directional type. We prove under the common assumptions used in direct search for single objective optimization that at least one limit point of the sequence of iterates generated by DMS lies in (a stationary form of) the Pareto front. However, extensive computational experience has shown that our methodology has an impressive capability of generating the whole Pareto front, even without using a search step. Two by-products of this paper are (i) the development of a collection of test problems for MOO and (ii) the extension of performance and data profiles to MOO, allowing a comparison of several solvers on a large set of test problems, in terms of their efficiency and robustness to determine Pareto fronts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel hybrid approach, combining wavelet transform, particle swarm optimization, and adaptive-network-based fuzzy inference system, is proposed in this paper for short-term electricity prices forecasting in a competitive market. Results from a case study based on the electricity market of mainland Spain are presented. A thorough comparison is carried out, taking into account the results of previous publications. Finally, conclusions are duly drawn.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the problem of energy resources management using modern metaheuristics approaches, namely Particle Swarm Optimization (PSO), New Particle Swarm Optimization (NPSO) and Evolutionary Particle Swarm Optimization (EPSO). The addressed problem in this research paper is intended for aggregators’ use operating in a smart grid context, dealing with Distributed Generation (DG), and gridable vehicles intelligently managed on a multi-period basis according to its users’ profiles and requirements. The aggregator can also purchase additional energy from external suppliers. The paper includes a case study considering a 30 kV distribution network with one substation, 180 buses and 90 load points. The distribution network in the case study considers intense penetration of DG, including 116 units from several technologies, and one external supplier. A scenario of 6000 EVs for the given network is simulated during 24 periods, corresponding to one day. The results of the application of the PSO approaches to this case study are discussed deep in the paper.