924 resultados para droplet actuation
Resumo:
Detailed analytical electron microscope (AEM) studies of yellow whiskers produced by chemical vapor deposition (CVD)1 show that two basic types of whiskers are produced at low temperatures (between 1200°C and 1400°C) and low boron to carbon gas ratios. Both whisker types show planar microstructures such as twin planes and stacking faults oriented parallel to, or at a rhombohedral angle to, the growth direction. For both whisker types, the presence of droplet-like terminations containing both Si and Ni indicate that the growth process during CVD is via a vapor-liquid-solid (VLS) mechanism.
Resumo:
Establishing a persistent presence in the ocean with an autonomous underwater vehicle (AUV) capable of observing temporal variability of large-scale ocean processes requires a unique sensor platform. In this paper, we examine the utility of vehicles that can only control their depth in the water column for such extended deployments. We present a strategy that utilizes ocean model predictions to facilitate a basic level of autonomy and enables general control for these profiling floats. The proposed method is based on experimentally validated techniques for utilizing ocean current models to control autonomous gliders. With the appropriate vertical actuation, and utilizing spatio–temporal variations in water speed and direction, we show that general controllability results can be met. First, we apply an A* planner to a local controllability map generated from predictions of ocean currents. This computes a path between start and goal waypoints that has the highest likelihood of successful execution. A computed depth plan is generated with a model-predictive controller (MPC), and selects the depths for the vehicle so that ambient currents guide it toward the goal. Mission constraints are included to simulate and motivate a practical data collection mission. Results are presented in simulation for a mission off the coast of Los Angeles, CA, USA, that show encouraging results in the ability of a drifting vehicle to reach a desired location.
Resumo:
Hand, Foot and Mouth Disease (HFMD), a contagious viral disease that commonly affects infants and children with blisters and flu like symptoms, is caused by a group of enteroviruses such as Enterovirus 71 (EV71) and coxsackievirus A16 (CA16). However some HFMD caused by EV71 may further develop into severe neurological complications such as encephalitis and meningitis. The route of transmission was postulated that the virus transmit from one person to another through direct contact of vesicular fluid or droplet from the infected or via faecal-oral route. To this end, this study utilised a human colorectal adenocarcinoma cell line (HT29) with epithelioid morphology as an in vitro model for the investigation of EV71 replication kinetics. Using qPCR, viral RNA was first detected in HT29 cells as early as 12 h post infection (hpi) while viral protein was first detected at 48 hpi. A significant change in HT29 cells’ morphology was also observed after 48 hpi. Furthermore HT29 cell viability also significantly decreased at 72 hpi. Together, data from this study demonstrated that co-culture of HT29 with EV71 is a useful in vitro model to study the pathogenesis of EV71
Resumo:
Pesticides used in agricultural systems must be applied in economically viable and environmentally sensitive ways, and this often requires expensive field trials on spray deposition and retention by plant foliage. Computational models to describe whether a spray droplet sticks (adheres), bounces or shatters on impact, and if any rebounding parent or shatter daughter droplets are recaptured, would provide an estimate of spray retention and thereby act as a useful guide prior to any field trials. Parameter-driven interactive software has been implemented to enable the end-user to study and visualise droplet interception and impaction on a single, horizontal leaf. Living chenopodium, wheat and cotton leaves have been scanned to capture the surface topography and realistic virtual leaf surface models have been generated. Individual leaf models have then been subjected to virtual spray droplets and predictions made of droplet interception with the virtual plant leaf. Thereafter, the impaction behaviour of the droplets and the subsequent behaviour of any daughter droplets, up until re-capture, are simulated to give the predicted total spray retention by the leaf. A series of critical thresholds for the stick, bounce, and shatter elements in the impaction process have been developed for different combinations of formulation, droplet size and velocity, and leaf surface characteristics to provide this output. The results show that droplet properties, spray formulations and leaf surface characteristics all influence the predicted amount of spray retained on a horizontal leaf surface. Overall the predicted spray retention increases as formulation surface tension, static contact angle, droplet size and velocity decreases. Predicted retention on cotton is much higher than on chenopodium. The average predicted retention on a single horizontal leaf across all droplet size, velocity and formulations scenarios tested, is 18, 30 and 85% for chenopodium, wheat and cotton, respectively.
Resumo:
Nanowires (NWs) have attracted appealing and broad application owing to their remarkable mechanical, optical, electrical, thermal and other properties. To unlock the revolutionary characteristics of NWs, a considerable body of experimental and theoretical work has been conducted. However, due to the extremely small dimensions of NWs, the application and manipulation of the in situ experiments involve inherent complexities and huge challenges. For the same reason, the presence of defects appears as one of the most dominant factors in determining their properties. Hence, based on the experiments' deficiency and the necessity of investigating different defects' influence, the numerical simulation or modelling becomes increasingly important in the area of characterizing the properties of NWs. It has been noted that, despite the number of numerical studies of NWs, significant work still lies ahead in terms of problem formulation, interpretation of results, identification and delineation of deformation mechanisms, and constitutive characterization of behaviour. Therefore, the primary aim of this study was to characterize both perfect and defected metal NWs. Large-scale molecular dynamics (MD) simulations were utilized to assess the mechanical properties and deformation mechanisms of different NWs under diverse loading conditions including tension, compression, bending, vibration and torsion. The target samples include different FCC metal NWs (e.g., Cu, Ag, Au NWs), which were either in a perfect crystal structure or constructed with different defects (e.g. pre-existing surface/internal defects, grain/twin boundaries). It has been found from the tensile deformation that Young's modulus was insensitive to different styles of pre-existing defects, whereas the yield strength showed considerable reduction. The deformation mechanisms were found to be greatly influenced by the presence of defects, i.e., different defects acted in the role of dislocation sources, and many affluent deformation mechanisms had been triggered. Similar conclusions were also obtained from the compressive deformation, i.e., Young's modulus was insensitive to different defects, but the critical stress showed evident reduction. Results from the bending deformation revealed that the current modified beam models with the considerations of surface effect, or both surface effect and axial extension effect were still experiencing certain inaccuracy, especially for the NW with ultra small cross-sectional size. Additionally, the flexural rigidity of the NW was found to be insensitive to different pre-existing defects, while the yield strength showed an evident decrease. For the resonance study, the first-order natural frequency of the NW with pre-existing surface defects was almost the same as that from the perfect NW, whereas a lower first-order natural frequency and a significantly degraded quality factor was observed for NWs with grain boundaries. Most importantly, the <110> FCC NWs were found to exhibit a novel beat phenomenon driven by a single actuation, which was resulted from the asymmetry in the lattice spacing in the (110) plane of the NW cross-section, and expected to exert crucial impacts on the in situ nanomechanical measurements. In particular, <110> Ag NWs with rhombic, truncated rhombic, and triangular cross-sections were found to naturally possess two first-mode natural frequencies, which were envisioned with applications in NEMS that could operate in a non-planar regime. The torsion results revealed that the torsional rigidity of the NW was insensitive to the presence of pre-existing defects and twin boundaries, but received evident reduction due to grain boundaries. Meanwhile, the critical angle decreased considerably for defected NWs. This study has provided a comprehensive and deep investigation on the mechanical properties and deformation mechanisms of perfect and defected NWs, which will greatly extend and enhance the existing knowledge and understanding of the properties/performance of NWs, and eventually benefit the realization of their full potential applications. All delineated MD models and theoretical analysis techniques that were established for the target NWs in this research are also applicable to future studies on other kinds of NWs. It has been suggested that MD simulation is an effective and excellent tool, not only for the characterization of the properties of NWs, but also for the prediction of novel or unexpected properties.
Resumo:
Small-scale pumps will be the heartbeat of many future micro/nanoscale platforms. However, the integration of small-scale pumps is presently hampered by limited flow rate with respect to the input power, and their rather complicated fabrication processes. These issues arise as many conventional pumping effects require intricate moving elements. Here, we demonstrate a system that we call the liquid metal enabled pump, for driving a range of liquids without mechanical moving parts, upon the application of modest electric field. This pump incorporates a droplet of liquid metal, which induces liquid flow at high flow rates, yet with exceptionally low power consumption by electrowetting/deelectrowetting at the metal surface. We present theory explaining this pumping mechanism and show that the operation is fundamentally different from other existing pumps. The presented liquid metal enabled pump is both efficient and simple, and thus has the potential to fundamentally advance the field of microfluidics.
Resumo:
In this paper, we address the control design problem of positioning of over-actuated marine vehicles with control allocation. The proposed design is based on a combined position and velocity loops in a multi-variable anti-windup implementation together with a control allocation mapping. The vehicle modelling is considered with appropriate simplifications related to low-speed manoeuvring hydrodynamics and vehicle symmetry. The control design is considered together with a control allocation mapping. We derive analytical tuning rules based on requirements of closed-loop stability and performance. The anti- windup implementation of the controller is obtained by mapping the actuator-force constraint set into a constraint set for the generalized forces. This approach ensures that actuation capacity is not violated by constraining the generalized control forces; thus, the control allocation is simplified since it can be formulated as an unconstrained problem. The mapping can also be modified on-line based on actuator availability to provide actuator-failure accommodation. We provide a proof of the closed-loop stability and illustrate the performance using simulation scenarios for an open-frame underwater vehicle.
Resumo:
In this paper, we address the control design problem of positioning of over-actuated underwater vehicles. The proposed design is based on a control architecture with combined position and velocity loops and a control tuning method based on the decoupled models. We derive analytical tuning rules based on requirements of closed-loop stability, positioning performance, and the vehicle velocity dynamic characteristics. The vehicle modelling is considered from force to motion with appropriate simplifications related to low-speed manoeuvring hydrodynamics and vehicle symmetry. The control design is considered together with a control allocation mapping. This approach makes the control tuning independent of the characteristics of the force actuators and provides the basis for control reconfiguration in the presence of actuator failure. We propose an anti-wind-up implementation of the controller, which ensures that the constraints related to actuation capacity are not violated. This approach simplifies the control allocation problem since the actuator constraints are mapped into generalised force constraints.
Resumo:
Background Despite a revived interest in fat grafting procedures, clinicians still fail to demonstrate clearly the in vivo behavior of fat grafts as a dynamic tissue substitute. However, the basic principles in cellular biology teach us that cells can survive and develop, provided that a structural matrix exists that directs their behavior. The purpose of this in vitro study was to analyze that behavior of crude fat grafts, cultured on a three-dimensional laminin-rich matrix. Methods Nonprocessed, human fat biopsy specimens (approximately 1 mm) were inoculated on Matrigel-coated wells to which culture medium was added. The control group consisted of fat biopsy specimens embedded in medium alone. The cellular proliferation pattern was followed over 6 weeks. Additional cultures of primary generated cellular spheroids were performed and eventually subjected to adipogenic differentiation media. Results A progressive outgrowth of fibroblast-like cells from the core fat biopsy specimen was observed in both groups. Within the Matrigel group, an interconnecting three-dimensional network of spindle-shaped cells was established. This new cell colony reproduced spheroids that functioned again as solitary sources of cellular proliferation. Addition of differentiation media resulted in lipid droplet deposition in the majority of generated cells, indicating the initial steps of adipogenic differentiation. Conclusions The authors noticed that crude, nonprocessed fat biopsy specimens do have considerable potential for future tissue engineering-based applications, provided that the basic principles of developmental, cellular biology are respected. Spontaneous in vitro expansion of the stromal cells present in fat grafts within autologous and injectable matrices could create "off-the-shelf" therapies for reconstructive procedures.
Resumo:
ROBERT EVAPORATORS in Australian sugar factories are traditionally constructed with 44.45 mm outside diameter stainless steel tubes of ~2 m length for all stages of evaporation. There are a few vessels with longer tubes (up to 2.8 m) and smaller and larger diameters (38.1 and 50.8 mm). Queensland University of Technology is undertaking a study to investigate the heat transfer performance of tubes of different lengths and diameters for the whole range of process conditions typically encountered in the evaporator set. Incorporation of these results into practical evaporator designs requires an understanding of the cost implications for constructing evaporator vessels with calandrias having tubes of different dimensions. Cost savings are expected for tubes of smaller diameter and longer length in terms of material, labour and installation costs in the factory. However these savings must be considered in terms of the heat transfer area requirements for the evaporation duty, which will likely be a function of the tube dimensions. In this paper a capital cost model is described which provides a relative cost of constructing and installing Robert evaporators of the same heating surface area but with different tube dimensions. Evaporators of 2000, 3000, 4000 and 5000 m2 are investigated. This model will be used in conjunction with the heat transfer efficiency data (when available) to determine the optimum tube dimensions for a new evaporator at a specified evaporation duty. Consideration is also given to other factors such as juice residence time (and implications for sucrose degradation and control) and droplet de-entrainment in evaporators of different tube dimensions.
Resumo:
Superhydrophobicity is directly related to the wettability of the surfaces. Cassie-Baxter state relating to geometrical configuration of solid surfaces is vital to achieving the Superhydrophobicity and to achieve Cassie-Baxter state the following two criteria need to be met: 1) Contact line forces overcome body forces of unsupported droplet weight and 2) The microstructures are tall enough to prevent the liquid that bridges microstructures from touching the base of the microstructures [1]. In this paper we discuss different measurements used to characterise/determine the superhydrophobic surfaces.
Resumo:
Realistic plant models are important for leaf area and plant volume estimation, reconstruction of growth canopies, structure generation of the plant, reconstruction of leaf surfaces and agrichemical spray droplet modelling. This article investigates several different scanning devices for obtaining a three dimensional digitisation of plant leaves with a point cloud resolution of 200-500μm. The devices tested were a Roland mdx-20, Microsoft Kinect, Roland lpx-250, Picoscan and Artec S. The applicability of each of these devices for scanning plant leaves is discussed. The most suitable tested digitisation device for scanning plant leaves is the Artec S scanner.
Resumo:
Realistic virtual models of leaf surfaces are important for a number of applications in the plant sciences, such as modelling agrichemical spray droplet movement and spreading on the surface. In this context, the virtual surfaces are required to be sufficiently smooth to facilitate the use of the mathematical equations that govern the motion of the droplet. While an effective approach is to apply discrete smoothing D2-spline algorithms to reconstruct the leaf surfaces from three-dimensional scanned data, difficulties arise when dealing with wheat leaves that tend to twist and bend. To overcome this topological difficulty, we develop a parameterisation technique that rotates and translates the original data, allowing the surface to be fitted using the discrete smoothing D2-spline methods in the new parameter space. Our algorithm uses finite element methods to represent the surface as a linear combination of compactly supported shape functions. Numerical results confirm that the parameterisation, along with the use of discrete smoothing D2-spline techniques, produces realistic virtual representations of wheat leaves.
Resumo:
Circular shortest paths represent a powerful methodology for image segmentation. The circularity condition ensures that the contour found by the algorithm is closed, a natural requirement for regular objects. Several implementations have been proposed in the past that either promise closure with high probability or ensure closure strictly, but with a mild computational efficiency handicap. Circularity can be viewed as a priori information that helps recover the correct object contour. Our "observation" is that circularity is only one among many possible constraints that can be imposed on shortest paths to guide them to a desirable solution. In this contribution, we illustrate this opportunity under a volume constraint but the concept is generally applicable. We also describe several adornments to the circular shortest path algorithm that proved useful in applications. © 2011 IEEE.
Resumo:
This study has provided further understanding of the pathogenesis of EV71, one of the major etiological agents associated with significant mortality in Hand, Foot and Mouth disease. Elucidating the host-pathogen interaction and the mechanism that the virus uses to bypass host defence systems to establish infection will aid in the development of potential antiviral therapeutics against EV71.