961 resultados para clean organic synthesis


Relevância:

40.00% 40.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Concerns over the economics of proven fossil fuel reserves, in concert with government and public acceptance of the anthropogenic origin of rising CO2 emissions and associated climate change from such combustible carbon, are driving academic and commercial research into new sustainable routes to fuel and chemicals. The quest for such sustainable resources to meet the demands of a rapidly rising global population represents one of this century’s grand challenges. Here, we discuss catalytic solutions to the clean synthesis of biodiesel, the most readily implemented and low cost, alternative source of transportation fuels, and oxygenated organic molecules for the manufacture of fine and speciality chemicals to meet future societal demands.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nanoporous phospho-tungstate organic-inorganic hybrid materials have been synthesized from sodium tungstate and mono-n-dodecyl phosphate (MDP), which was used as both surfactant and phosphorus precursor. These hybrid materials were thoroughly characterized by N2 adsorption, elemental analysis, powder XRD, FTIR, Raman, TG, TEM and XPS and possess lamellar structures with interlayer spacings of 3.2 nm. A plausible method for formation of hybrid materials comprised of lacunary Keggin anions and micelles of surfactants is proposed. © The Royal Society of Chemistry 2008.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The quest for renewable energy sources has led to growing attention in the research of organic photovoltaics (OPVs), as a promising alternative to fossil fuels, since these devices have low manufacturing costs and attractive end-user qualities, such as ease of installation and maintenance. Wide application of OPVs is majorly limited by the devices lifetime. With the development of new encapsulation materials, some degradation factors, such as water and oxygen ingress, can almost be excluded, whereas the thermal degradation of the devices remains a major issue. Two aspects have to be addressed to solve the problem of thermal instability: bulk effects in the photoactive layer and interfacial effects at the photoactive layer/charge-transporting layers. In this work, the interface between photoactive layer and electron-transporting zinc oxide (ZnO) in devices with inverted architecture was engineered by introducing polymeric interlayers, based on zinc-binding ligands, such as 3,4-dihydroxybenzene and 8-hydroxyquinoline. Also, a cross-linkable layer of poly(3,4-dimethoxystyrene) and its fullerene derivative were studied. At first, controlled reversible addition-fragmentation chain transfer (RAFT) polymerisation was employed to achieve well-defined polymers in a range of molar masses, all bearing a chain-end functionality for further modifications. Resulting polymers have been fully characterised, including their thermal and optical properties, and introduced as interlayers to study their effect on the initial device performance and thermal stability. Poly(3,4-dihydroxystyrene) and its fullerene derivative were found unsuitable for application in devices as they increased the work function of ZnO and created a barrier for electron extraction. On the other hand, their parental polymer, poly(3,4-dimethoxystyrene), and its fullerene derivative, upon cross-linking, resulted in enhanced efficiency and stability of devices, if compared to control. Polymers based on 8-hydroxyquinoline ligand had a negative effect on the initial stability of the devices, but increased the lifetime of the cells under accelerated thermal stress. Comprehensive studies of the key mechanisms, determining efficiency, such as charge generation and extraction, were performed by using time-resolved electrical and spectroscopic techniques, in order to understand in detail the effect of the interlayers on the device performance. Obtained results allow deeper insight into mechanisms of degradation that limit the lifetime of devices and prompt the design of better materials for the interface stabilisation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Metal-organic frameworks (MOFs) have attracted significant attention during the past decade due to their high porosity, tunable structures, and controllable surface functionalities. Therefore many applications have been proposed for MOFs. All of them however are still in their infancy stage and have not yet been brought into the market place. In this thesis, the background of the MOF area is first briefly introduced. The main components and the motifs of designing MOFs are summarized, followed by their synthesis and postsynthetic modification methods. Several promising application areas of MOFs including gas storage and separation, catalysis and sensing are reviewed. The current status of commercialization of MOFs as new chemical products is also summarized. Examples of the design and synthesis of two new MOF structures Eu(4,4′,4′′,4′′′-(porphine-5,10,15,20-tetrayl)tetrakis(benzoic acid))·2H2O∙xDMF and Zn4O(azobenzene-4,4’-dicarboxylic acid)3∙xNMP are described. The first one contains free-base porphyrin centers and the second one has azobenzene components. Although the structures were synthesized as designed, unfortunately they did not possess the expected properties. The research idea to use MOFs as template materials to synthesize porous polymers is introduced. Several methods are discussed to grow PMMA into IRMOF-1 (Zn4O(benzene-1,4-dicarboxylate)3, IR stands for isoreticular) structure. High concentration of the monomers resulted in PMMA shell after MOF digestion while with low concentration of monomers no PMMA was left after digestion due to the small iii molecular weight. During the study of this chapter, Kitagawa and co-workers published several papers on the same topic, so this part of the research was terminated thereafter. Many MOFs are reported to be unstable in air due to the water molecules in air which greatly limited their applications. By incorporating a number of water repelling functional groups such as trifluoromethoxy group and methyl groups in the frameworks, the water stability of MOFs are shown to be significantly enhanced. Several MOFs inculding Banasorb-22 (Zn4O(2-trifluoromethoxybenzene-1,4-dicarboxylate)3), Banasorb-24 (Zn4O(2, 5-dimethylbenzene-1,4-dicarboxylate)3) and Banasorb-30 (Zn4O(2-methylbenzene-1,4-dicarboxylate)3) were synthesized and proved to have isostructures with IRMOF-1. Banasorb-22 was stable in boiling water steam for one week and Banasorb-30’s shelf life was over 10 months under ambient condition. For comparison, IRMOF-1’s structure collapses in air after a few hours to several days. Although MOF is a very popular research area nowadays, only a few studies have been reported on the mechanical properties of MOFs. Many of MOF’s applications involve high pressure conditions, so it is important to understand the behavior of MOFs under elivated pressures. The mechanical properties of IRMOF-1 and a new MOF structure Eu2(C12N2O4H6)3(DEF)0.87(H2O)2.13 were studied using diamond anvil cells at Advanced Photon Source. IRMOF-1 experienced an irriversible phase transtion to a nonporous phase followed by amorphization under high pressure. Eu2(C12N2O4H6)3(DEF)0.87(H2O)2.13 showed reversible compression under pressure up to 9.08GPa.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hexaphenylbiadamantane-based microporous organic polymers (MOPs) were successfully synthesized by Suzuki coupling under mild conditions. The obtained MOPs show high surface area (891 m2 g−1), ultra-high thermal (less than 40% mass loss at temperatures up to 1000 °C) and chemical (no apparent decomposition in organic solvents for more than 7 days) stability, gas (H2, CO2, CH4) capture capabilities and vapor (benzene, hexane) adsorption. These combined abilities render the synthesized MOPs an attractive candidate as thermo-chemically stable adsorbents for practical use in gas storage and pollutant vapor adsorption.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis describes the synthesis and characterisation of novel conjugated organic materials with optoelectronic application. The first chapter provides an introduction about organic semiconductors and in particular about their working principle from a physical and chemical point of view. An overview of the most common types of solar cells is provided, including examples of some of the best performing materials. The second chapter describes the synthesis of a new library of flavin derivatives as potential active materials for optoelectronic applications. Flavins are natural redox-active molecules, which show potential application in optoelectronics, thanks to their stability and versatility. FPF-Flavins, for instance, could be used either as acceptor units in push-pull polyconjugated systems or as acceptor unit in dyes for DSSCs. In the same chapter a first attempt of synthesising bis-flavins to be used as N-type semiconductors in BHJ devices is described. The third chapter describes the successful synthesis and characterization of a series of conjugated organic molecules based on the benzothiadiazole moiety. Among these, three molecules containing ferrocene as donor unit were tested as sensitizers for DSSCs, reporting a PCE of 0.3% as the best result. Further studies indicated a significant problem of charge recombination which limits the performance. A near-infrared absorbing push-pull polymer, based on BbT as acceptor unit, was also synthesised and tested in BHJ devices as P-type semiconductor in blend with PC71BM, showing a VOC of 0.71 V. Finally, the last chapter describes the synthesis of several tetrathiafulvalene derivatives in order to explore this moiety as donor unit in dyes for DSSCs and as HTM for perovskite-based solar cells. In particular, two very simple dyes were synthesised and implemented in DSSCs reporting a PCE 0.2% and 0.4%, respectively. The low efficiency was associated to the tendency to aggregate at the solid state, with the absorption shifting from the visible to the infrared range. A conjugated molecule, containing a DPP core, was also synthesised and tested as HTM for perovskite solar cells. The best reported PCE of 7.7% was obtained without any additives. A case study about dehalogenation and “halogen dance” in TTF iodide is also presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Due to the low cost, lightness and flexibility, Polymer Solar Cell (PSC) technology is considered one of the most promising energy technologies. In the past decades, PSCs using fullerenes or fullerene derivatives as the electron acceptors have made great progress with best power conversion efficiency (PCE) reaching 11%. However, fullerene type electron acceptors have several drawbacks such as complicated synthesis, a low light absorption coefficient and poor tuning in energy levels, which prevent the further development of fullerene-based PSCs. Hence the need to have a new class of electron acceptors as an alternative to conventional fullerene compounds. Non-fullerene acceptors (NFAs) have developed rapidly in the last years and the maximum PCEs have exceeded 14% for single-junction cells and 17% for double-junction tandem cells. By combining an electron-donating backbone, generally with several fused rings with electron-withdrawing units, we can simply construct NFA of the acceptor–donor–acceptor type (A–D–A). Versatile molecular structures have been developed using methods such as acceptor motif engineering and donor motif engineering. However, there are only a few electron-donating backbones that have been proved to be successful. Therefore, it is still necessary to develop promising building blocks to further enrich the structural diversity. An indacenodithiophene (IDT) unit with just five fused rings has a sufficiently rigid coplanar structure, which has been regarded as one of the promising electron-rich units to design high-performance A–D–A NFAs. In this work, performed at the King Abdullah University of Science and Technology in Saudi Arabia, a new nine-cyclic building block (TBIDT) with a two benzothiophene unit was synthesized and used for designing new non-fullerene electron acceptors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

​The research work described in this thesis concerns the synthesis, characterization, and applications of two kinds of metal-organic frameworks (MOFs), Copper based MOF (Cu-MOF) and zirconium based MOF (Zr-MOF) functionalized with new linkers. ​The common thread of this research project can be summarized in three work phases: ​first, the synthesis and characterization of new organic linkers is described, followed by the presentation of the different optimization conditions for the MOFs synthesis. ​Second, the new materials were fully characterized using several complementary techniques, such as infrared (ATR-FTIR) and Raman spectroscopy, X-ray powder diffraction spectroscopy (PXRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), atomic absorption spectroscopy (AAS) as well as thermal and surface area measurements. ​Final, to obtain a complete work the possible environmental applications of the new materials were explored.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The current issue of the resource of energy combined with the tendency to give a green footprint to our lifestyle have prompted the research to focus the attention on alternative sources with great strides in the optimization of polymeric photovoltaic devices. The research work described in this dissertation consists in the study of different semiconducting π-conjugated materials based on polythiophenes (Chapter I). In detail, the GRIM polymerization was deepened defining the synthetic conditions to obtain regioregular poly(3-alkylthiophene) (Chapter II). Since the use of symmetrical monomers functionalized with oxygen atom(s) allows to adopt easy synthesis leading to performing materials, disubstituted poly(3,4-dialkoxythiophene)s were successfully prepared, characterized and tested as photoactive materials in solar cells (Chapter III). A “green” resource of energy should be employed through sustainable devices and, for this purpose, the research work was continued on the synthesis of thiophene derivatives soluble in eco-friendly solvents. To make this possible, the photoactive layer was completely tailored starting from the electron-acceptor material. A fullerene derivative soluble in alcohols was successfully synthetized and adopted for the realization of the new devices (Chapter IV). New water/alcohol soluble electron-donor materials with different functional groups were prepared and their properties were compared (Chapter V). Once found the best ionic functional group, a new double-cable material was synthetized optimizing the surface area between the different materials (Chapter VI). Finally, other water/alcohol soluble materials were synthetized, characterized and used as cathode interlayers in eco-friendly devices (Chapter VII). In this work, all prepared materials were characterized by spectroscopy analyses, gel permeation chromatography and thermal analyses. Cyclic voltammetry, X-ray diffraction, atomic force microscopy and external quantum efficiency were used to investigate some peculiar aspects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A stereoselective total synthesis of (-)-cryptocaryol A () is described. Key features of the 17-step route include the use of three boron-mediated aldol reaction-reduction sequences to control all stereocenters and an Ando modification of the Horner-Wadsworth-Emmons olefination that permitted the installation of the Z double bond of the α-pyrone ring.