950 resultados para cal virgem
Resumo:
Maltose binding protein (MBP) is a large, monomeric two domain protein containing 370 amino acids. In the absence of denaturant at neutral pH, the protein is in the native state, while at pH 3.0 it forms a molten globule. The molten globule lacks a tertiary circular dichroism signal but has secondary structure similar to that of the native state. The molten globule binds 8-anilino-1-naphthalene sulfonate (ANS). The unfolding thermodynamics of MBP at both pHs were measured by carrying out a series of isothermal urea melts at temperatures ranging from 274–329 K. At 298 K, values of [Delta]G°, [Delta]Cp, and Cm were 3.1 ± 0.2 kcal mol−1, 5.9 ± 0.8 kcal mol−1 K−1 (15.9 cal (mol-residue)−1 K−1), and 0.8 M, respectively, at pH 3.0 and 14.5 ± 0.4 kcal mol−1, 8.3 ± 0.7 kcal mol−1 K−1 (22.4 kcal (mol-residue)−1 K−1), and 3.3 M, respectively, at pH 7.1. Guanidine hydrochloride denaturation at pH 7.1 gave values of [Delta]G° and [Delta]Cp similar to those obtained with urea. The m values for denaturation are strongly temperature dependent, in contrast to what has been previously observed for small globular proteins. The value of [Delta]Cp per mol-residue for the molten globule is comparable to corresponding values of [Delta]Cp for the unfolding of typical globular proteins and suggests that it is a highly ordered structure, unlike molten globules of many small proteins. The value of [Delta]Cp per mol-residue for the unfolding of the native state is among the highest currently known for any protein.
Resumo:
Examining theories with an extended strong interaction sector such as axigluons or flavour universal colorons, we find that the constraints obtained from the current data on $t \bar t$ production at the Tevatron are in the range of $\sim {\cal O}$ TeV and thus competitive with those obtained from the dijet data. We point out that for large axigluon/coloron masses, the limits on the coloron mass may be different than those for the axigluon even for $\cot \xi = 1$. We also compute the expected forward-backward asymmetry for the case of the axigluons which would allow it to be discriminated against the SM as also the colorons. We further find that at the LHC, the signal should be visible in the $t \bar t$ invariant mass spectrum for a wide range of axigluon and coloron masses that are still allowed. We point out how top polarisation may be used to further discriminate the axigluon and coloron case from the SM as well as from each other.
Resumo:
he thermodynamic properties of mono- and dicalcium stannates have been determined in the temperature range 973–-1423°K from the electromotive force measurements on solid oxide galvanic cells[dformula Pt, Ni + NiO//CaO - ZrO[sub 2]/Y[sub 2]0[sub 3] - ThO[sub 2]//SnO[sub 2] + Sn, W, Pt][dformula Pt, Ni + NiO//CaO - ZrO[sub 2]/Y[sub 2]O[sub 3] - ThO[sub 2]//CaSnO[sub 3] + SnO[sub 2] + Sn, W, Pt][dformula Pt, Ni + NiO//CaO - ZrO[sub 2]/Y[sub 2]O[sub 3] - ThO[sub 2]/Ca[sub 2]SnO[sub 4] + CaSnO[sub 3] + Sn, W, Pt]and [dformula Pt, Ni + NiO//CaO - ZrO[sub 2]sol;Y[sub 2]O[sub 3] - ThO[sub 2]//Ca[sub 2]SnO[sub 4] + CaO, W, Pt] The Gibbs free energy changes accompanying the formation of the stannates from component oxides may be represented by the equations[dformula 2CaO + SnO[sub 2] --> Ca[sub 2]SnO[sub 4]][dformula Delta G[degree] = - 17,040 + 0.85T ([plus-minus]300) cal][dformula CaO + SnO[sub 2] --> CaSnO[sub 3]][dformula Delta G[degree] = - 17,390 + 2.0T ([plus-minus]300) cal]The partial pressures of the tin bearing oxide species resulting from the decomposition of the stannates have been calculated as a function of the oxygen partial pressure by combining the results of this study with published information on the partial pressures and composition of oxide species over stannic oxide.
Resumo:
From electromotive force (emf) measurements using solid oxide galvanic cells incorporating ZrOz-CaO and ThOz-YO~.s electrolytes, the chemical potentials of oxygen over the systems Fe + FeCrzO 4 + Cr20 ~ and Fe + FeV204 + V203 were calculated. The values may be represented by the equations: 2Fe(s, I) + Oz(g) + 2Cr2Oa(s) -- 2FeCr204 (s)Akto2 = - 151,400 + 34.7T (• cal= -633,400 + 145.5T(• J (750 to 1536~ A~tO2 = -158,000 + 38.4T(• cal= -661,000 + 160.5T(*1250) J (1536 to 1700~2Fe (s, I) + O2 (g) + 2V203 (s) -- 2FeV204 (s) A/~Oz = - 138,000 + 29.8T(+300) cal= - 577,500 + 124.7T (• J (750 to 1536~A/IO2 = -144,600 + 33.45T(-300) cal = -605,100 + 140.0T(~-1250) J (1536 to 1700~At the oxygen potentials corresponding to Fe + FeCrzO a + Cr203 equilibria, the electronic contribution to the conductivity of ZrO2-CaO electrolyte was found to affect the measured emf. Application of a small 60 cycle A.C. voltage with an amplitude of 50 mv across the cell terminals reduced the time required to attain equilibrium at temperatures between 750 to 9500C by approximately a factor of two. The second law entropy of iron chromite obtained in this study is in good agreement with that calculated from thermal data. The entropies of formation of these spinel phases from the component oxides can be correlated to cation distribution and crystal field theory.
Resumo:
The standard free energies of formation of Zn2Ti04 and ZnTi03 have been determined in the temperature range 930° to i ioo'x from electromotive force measurements on reversible solid oxide galvanic cells;Ag-5at%znll I Pt, + CaO-Zr02 ZnO I II Ag-5at%Zn Y20r Th02 CaO-Zr02 + ,Pt Zn2Ti04+ ZnTi03 and II Ag-5at%Zn CaO-Zr02 + ,Pt ZnTi03+ Ti02 The values may be expressed by the equations,2ZnO (wurtz) + Ti02(rut) -> Zn2Ti04(sp), f:!:.Go = -750-2-46T (±75)cal;ZnO(wurtz) +Ti02(rut) -> ZnTi03(ilmen) ,f:!:.Co = -]600-0·]99T(±50)cal.Combination of the free energy values with the calorimetric heat of formation, and low-temperature and high-temperature heat capacity of Zn2Ti04 reported in literature, suggests a residual entropy of ],9 (±0·6) cal K-1 mol ? for the cubic spinel. Ideal mixing of Zn2+ and Ti4+ ions on the octahedral sites would result in a configurational contribution to the entropy of 2· 75 cal K-1 rnol ".The difference is indicative of short-range ordering of cations on octahedral sites.
Resumo:
The solubility of oxygen in liquid gallium in the temperature range 775 –1125 °C and in liquid gallium-copper alloys at 1100 °C, in equilibrium with β-Ga2O3, has been measured by an isopiestic equilibrium technique. The solubility of oxygen in pure gallium is given by the equation log (at.% O) = −7380/T + 4.264 (±0.03) Using recently measured values for the standard free energy of formation of β-Ga2O3 and assuming that oxygen obeys Sievert's law up to the saturation limit, the standard free energy of solution of oxygen in liquid gallium may be calculated : View the MathML sourceΔ°298 = −52 680 + 6.53T (±200) cal where the standard state for dissolved oxygen is an infinitely dilute solution in which the activity is equal to atomic per cent. The effect of copper on the activity of oxygen dissolved in liquid gallium is found to be in good agreement with that predicted by a recent quasichemical model in which it was assumed that each oxygen is interstitially coordinated to four metal atoms and that the nearest neighbour metal atoms lose approximately half their metallic cohesive energies.
Resumo:
The solubility of oxygen in liquid indium in the temperature range 650–820 °C and in liquid copper-indium alloys at 1100 °C in equilibrium with indium sesquioxide has been measured by a phase equilibration technique. The solubility of oxygen in pure indium is given by the relation log(at.% O) = −4726/T + 3.73 (±0.08) Using the recently measured values for the standard free energy of formation of In2O3 and assuming that oxygen obeys Sievert's law up to saturation, the standard free energy of solution of molecular oxygen in liquid indium is calculated as View the MathML sourceΔG°= −51 440 + 8.07 T (±500) cal where the standard state for dissolved oxygen is an infinitely dilute solution in which activity is equal to atomic per cent. The effect of indium additions on the activity coefficient of oxygen dissolved in liquid copper was measured by a solid oxide galvanic cell. The interaction parameter ϵ0In is given by View the MathML source The experimentally determined variation of the activity coefficient of oxygen in dilute solution in Cu-In alloys is in fair agreement with that predicted by a quasichemical model in which each oxygen atom is assumed to be interstitially coordinated to four metal atoms and the nearest neighbour metal atoms are assumed to lose approximately half their metallic cohesive energies.
Resumo:
The solubility of oxygen in liquid germanium in the temperature range 1233 to 1397 K, and in liquid germanium-copper alloys at 1373 K, in equilibrium with GeO2 has been measured by the phase equilibration technique. The solubility of oxygen in pure germanium is given by the relation R470 log(at. pct 0)=-6470/T+4.24 (±0.07). The standard free energy of solution of oxygen in liquid germanium is calculated from the saturation solubility, and recently measured values for the free energy of formation of GeO2, assuming that oxygen obeys Sievert’s law up to the saturation limit. For the reaction, 1/2 O2(g)→ OGe ΔG° =-39,000 + 3.21T (±500) cal = -163,200 + 13.43T (±2100) J. where the standard state for dissolved oxygen is that which makes the value of activity equal to the concentration (in at. pct), in the limit, as concentration approaches zero. The effect of copper on the activity of oxygen dissolved in liquid germanium is found to be in good agreement with that predicted by a quasichemical model in which each oxygen was assumed to be bonded to four metal atoms and the nearest neighbor metal atoms to an oxygen atom are assumed to lose approximately half of their metallic bonds.
Resumo:
Measurements a/the Gibbs' energy enthalpy and entrupy vffarmation oj chromites, vanadites and alumlnat.:s 0/ F", Ni. Co'. Mn, Zn Mg and Cd, using solid oxide galvanic cells over a ternperature range extending approximately lOOO°C, have shown that the '~'Ilir"!,,, J'JrIl/iJ~ tion 0/ cubic 2-3 oxide spinel phases (MX!O,), from component oxide (MO) with rock-salt and X.Os whir c(1f'l/!ldwn st!'llt'lw,·. call b,' represented by a semi-empirical correlalion, ~S~ = --LiS + L'i,SM +~S~:"d(±O.3) cal.deg-1 mol-1 where /',.SM Is the entropy 0/calian mixing oillhe tetrahedral alld octahedral sites o/the spinel and Sr:~ is tlie enfropy associaf,'d Wifh Ih,' randomization a/the lahn-Telier distortions. A review a/the methods/or evaluating the cation distriblltion lfl spille!s suggeJ{j' l/r,l! Ihe most promising scheme is based Oil octahedral site preference energies from the crystal field theory for the Iral1silioll IIIl'f"! IlIIL';. For I/""-Irallsifioll melal cal ions site preference energies are derived relative /0 thol'lt fLI, [ransilion metal ions from measured high tClllP('ftJi ure Cal iUlI disll iiJuriol1 in spine! phases thar contail! one IransilioJl metal and another non-transition metal carion. For 2-3 srinds compulatiorrs b,IS"J Oil i.!c[J;' Temkin mixing on each catioll subialtice predici JistributionJ that are In fair agreement with X-ray and 1I1'IIIrOll ditTraction, /IIdg""!ic dll.! electrical propcrries, and spectroscopic measurements. In 2-4 spineis mixing vI ions do not foliow strictly ideal slllIistli:al Jaws, Th,' OIl/up) associated with the randomizalion 0/the Jllhn-Teller dislOriioll" appear to be significant, only ill spinels witll 3d'. 3d', 3d' (ifld~UI' iOtls in tetrahedral and 3d' and 3d9 ions in octahedral positions. Application 0/this structural model for predicting the thermodynamic proputies ofspinel solid .,olutiofl5 or,' illustrated. F,lr complex systems additional contributions arising from strain fields, redox equilibria and off-center ions have to be qllalllififti. The entropy correlation for spinels provides a method for evaluating structure tran:.jormafiofl entropies in silllple o.\id.-s, ["founlllion on the relative stabilities ofoxides in different crystallCtructures is USe/III for computer ea/culaliof! a/phase dfugrullls ofIlIrer,',,1 III (N.lll1ie5 by method, similar to thost: used by Kaufman and Bernstein for refractory alloy systems. Examples oftechnoiogical appliCation tnclude the predictioll ofdeoxidation equilibria in Fe-Mn-AI-O s),slelll at 1600°C duj ,'Ulllpltfalion 0/phase relutions in Fe-Ni-Cr-S system,
Resumo:
The solution of the forward equation that models the transport of light through a highly scattering tissue material in diffuse optical tomography (DOT) using the finite element method gives flux density (Phi) at the nodal points of the mesh. The experimentally measured flux (U-measured) on the boundary over a finite surface area in a DOT system has to be corrected to account for the system transfer functions (R) of various building blocks of the measurement system. We present two methods to compensate for the perturbations caused by R and estimate true flux density (Phi) from U-measured(cal). In the first approach, the measurement data with a homogeneous phantom (U-measured(homo)) is used to calibrate the measurement system. The second scheme estimates the homogeneous phantom measurement using only the measurement from a heterogeneous phantom, thereby eliminating the necessity of a homogeneous phantom. This is done by statistically averaging the data (U-measured(hetero)) and redistributing it to the corresponding detector positions. The experiments carried out on tissue mimicking phantom with single and multiple inhomogeneities, human hand, and a pork tissue phantom demonstrate the robustness of the approach. (C) 2013 Society of Photo-Optical Instrumentation Engineers (SPIE) DOI: 10.1117/1.JBO.18.2.026023]
Resumo:
The acoustical behaviour of an elliptical chamber muffler having a side inlet and side outlet port is analyzed in this paper, wherein a uniform velocity piston source is assumed to model the 3-D acoustic field in the elliptical chamber cavity. Towards this end, we consider the modal expansion of the acoustic pressure field in the elliptical cavity in terms of the angular and radial Mathieu func-tions, subjected to the rigid wall condition. Then, the Green's function due to the point source lo-cated on the side (curved) surface of the elliptical chamber is obtained. On integrating this function over the elliptical piston area on the curved surface of the elliptical chamber and subsequent divi-sion by the area of the elliptic piston, one obtains the acoustic pressure field due to the piston driven source which is equivalent to considering plane wave propagation in the side ports. Thus, one can obtain the acoustic pressure response functions, i.e., the impedance matrix (Z) parameters due to the sources (ports) located on the side surface, from which one may also obtain a progressive wave rep-resentation in terms of the scattering matrix (S). Finally, the acoustic performance of the muffler is evaluated in terms of the Transmission loss (TL) which is computed in terms of the scattering pa-rameters. The effect of the axial length of the muffler and the angular location of the ports on the TL characteristics is studied in detail. The acoustically long chambers show dominant axial plane wave propagation while the TL spectrum of short chambers indicates the dominance of the trans-versal modes. The 3-D analytical results are compared with the 3-D FEM simulations carried on a commercial software and are shown to be in an excellent agreement, thereby validating the analyti-cal procedure suggested in this work.
Resumo:
Wave propagation around various geometric expansions, structures, and obstacles in cardiac tissue may result in the formation of unidirectional block of wave propagation and the onset of reentrant arrhythmias in the heart. Therefore, we investigated the conditions under which reentrant spiral waves can be generated by high-frequency stimulation at sharp-edged obstacles in the ten Tusscher-Noble-Noble-Panfilov (TNNP) ionic model for human cardiac tissue. We show that, in a large range of parameters that account for the conductance of major inward and outward ionic currents of the model fast inward Na+ current (INa), L-type slow inward Ca2+ current (I-CaL), slow delayed-rectifier current (I-Ks), rapid delayed-rectifier current (I-Kr), inward rectifier K+ current (I-K1)], the critical period necessary for spiral formation is close to the period of a spiral wave rotating in the same tissue. We also show that there is a minimal size of the obstacle for which formation of spirals is possible; this size is similar to 2.5 cm and decreases with a decrease in the excitability of cardiac tissue. We show that other factors, such as the obstacle thickness and direction of wave propagation in relation to the obstacle, are of secondary importance and affect the conditions for spiral wave initiation only slightly. We also perform studies for obstacle shapes derived from experimental measurements of infarction scars and show that the formation of spiral waves there is facilitated by tissue remodeling around it. Overall, we demonstrate that the formation of reentrant sources around inexcitable obstacles is a potential mechanism for the onset of cardiac arrhythmias in the presence of a fast heart rate.
Resumo:
Con el fin de determinar el programa de iluminación más adecuado que permita maximizar los rendimientos productivos y disminuir los costos de producción en pollos de engorde, se realizó el presente ensayo en condiciones de producción comercial, bajo un sistema tradicional. El total de aves utilizadas fueron 196, pertenecientes a la línea Hubbard Peterson, de un día de nacidas, mixtas. Estas fueron alojadas en una galera (rancho de palma) con dimensiones de 29 m de largo * 1O m de ancho* 5 m de alto, y capacidad total de alojamiento de 2900 aves; por un período de 42 días. Para efectos experimentales las aves fueron agrupadas aleatoriamente en dos cubículos, a razón de 98/ grupo, utilizando una densidad de alojamiento de 9 8 aves 1m2. Los tratamientos evaluados fueron: T1= 23 hrs luz + 1 hr de oscuridad y T2 = 23 hrs luz + 1 hr de oscuridad hasta las dos semanas, en adelante hasta el sacrificio sólo luz natural. Las variables de respuesta fueron: Peso Final (PF) Consumo de Alimento (CAl) , Ganancia Media Diaria (GMD) e índice de Conversión Alimenticia (ICA), Margen Bruto (MB) y Relación Beneficio Costo (8\C). Para el análisis estadístico se utilizó un DCA con arreglo bifactoríal y prueba de separación de medías por Tukey, mediante el paquete estadístico SAS, 1991. Con base en los resultados de los análisis, no se encontraron diferencias significativas entre los tratamientos para las variables GMD e ICA; no así para CAL, y PF. Los valores promedios semanales a lo largo del período (6 semanas), pera las variables evaluadas, fueron los siguientes: Para T1, CAl= 87.37g, GM0=57.17g, ICA= 1.66 y PF= 1.895kg: para T2, CAL= 83.68g, GMD= 54.81g, ICA= 1.58 y PF= 1.833kg. En el análisis financiero, el tratamiento con un periodo de 12 horas de iluminación, se obtuvo una reducción del 66.66% en los costos de iluminación, y una superioridad del 19% en el margen bruto y 6.15% en la relación beneficio costo en relación al periodo de 23 horas luz.