932 resultados para absorption properties
Resumo:
The absorption spectra, emission spectra and infrared spectra of Er3+/Yb3+ co-doped xBi(2)O(3)-(65 - x)P2O5-4Yb(2)O(3)-11Al(2)O(3)-5BaO-15Na(2)O were measured and investigated. Spontaneous emission probability, radiative lifetime and branching ratios of Er3+ were calculated according to the Judd-Ofelt theory. The role of substitution of Bi2O3 for P2O5 on luminescence of Er3+/Yb3+ co-doped aluminophosphate glasses has been investigated. The calculated radiative lifetimes (tau(rad)) for I-4(13/2) and I-4(11/2) were decreasing with Bi2O3 content increases, whereas the measured total lifetime (tau(meas)) for I-4(13/2) showed linearly increasing trends. The effect of Bi2O3 introduction on OH- groups was also discussed according to the IR transmittance spectra of glasses. It was found that FWHM of glasses were not affected with the substitution of Bi2O3 for P2O5. The emission spectra intensity increased with Bi2O3 content due to the decreases of phonon energy and OH- content in glasses. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Effect of the substitutions of chloride for fluoride on the chemical and physical properties and the crystallization behavior in heavy metal fluoride glasses has been investigated. The characteristic temperature of the glass does not changed obviously when the fluoride was taken place by chloride. Compared with samples of being free of ErF3, the doping samples are more inclined to be surface crystallization. Optical basicity in the glass system increases with increasing the negative charge provided by the chloride atoms and the absorption peak red shifted is observed in absorption spectra. XRD measurements show that not a single crystalline phase appears in the heated glass samples, which indicate the substitutions of chloride for fluoride with a variety of crystalline precipitation trends. (c) 2007 Elsevier B.V All rights reserved.
Resumo:
Yb-doped and Yb-Al-codoped high silica glasses have been prepared by sintering nanoporous glasses. The absorption, fluorescent spectra and fluorescent lifetimes have been measured and the emission cross-section and minimum pump intensities were calculated. Codoping aluminum ions enhanced the fluorescence intensity of Yb-doped high silica glass obviously. The emission cross-sections of Yb-doped and Yb-Al-codoped high silica glasses were 0.65 and 0.82 pm(2), respectively. The results show that Yb-Al-codoped high silica glass has better spectroscopic properties for a laser material. The study of high silica glass doped with ytterbium is helpful for its application in Yb laser systems, especially for high-power and high-repetition lasers. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The effect of Al(PO3)(3) content on physical, chemical and optical properties of fluorophosphate glasses for 2 mu m application, such as thermal stability, chemical durability, surface hardness, absorption spectra and emission spectra, is investigated. With the increment of Al(PO3)(3) content, the thermal stability characterized by the gap of T-g and T,, increases first and then decreases, and reaches the maximum level containing 5 mol% Al(PO3)(3) content. The density and chemical durability decrease monotonously with the introduction of Al(PO3)(3) content increasing, while the refractive index and surface hardness increase. Above properties of fluorophosphate glasses are also compared with fluoride glasses and phosphate glasses. The Judd-Ofelt parameters, absorption and emission cross sections are discussed based on the absorption spectra of Tm-doped glasses. The emission spectra are also measured and the 1.8 mu m fluorescence of the sample is obvious indicating that it is suitable to 2 mu m application. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fe3O4 and ZnxFe3-xO4 pure and doped magnetite magnetic nanoparticles (NPs) were prepared in aqueous solution (Series A) or in a water-ethyl alcohol mixture (Series B) by the co-precipitation method. Only one ferromagnetic resonance line was observed in all cases under consideration indicating that the materials are magnetically uniform. The shortfall in the resonance fields from 3.27 kOe (for the frequency of 9.5 GHz) expected for spheres can be understood taking into account the dipolar forces, magnetoelasticity, or magnetocrystalline anisotropy. All samples show non-zero low field absorption. For Series A samples the grain size decreases with an increase of the Zn content. In this case zero field absorption does not correlate with the changes of the grain size. For Series B samples the grain size and zero field absorption behavior correlate with each other. The highest zero-field absorption corresponded to 0.2 zinc concentration in both A and B series. High zero-field absorption of Fe3O4 ferrite magnetic NPs can be interesting for biomedical applications.
Resumo:
YAlO3 single crystal doped with Ce3+ at concentration 1% was grown by the temperature gradient technique. The as-grown crystal was pink. After H-2 annealing or air annealing at 1400degreesC for 20 h, the crystal was turned into colorless. We concluded there were two kinds of color centers in the as-grown crystal. One is F+ center attributed to absorption band peaking at about 530 nm, the other is O- center attributed to absorption band peaking at about 390 nm. This color centers model can be applied in explaining the experiment phenomena including the color changes, the absorption spectra changes, and the light yield changes of Ce:YAP crystals before and after annealing. (C) 2004 American Institute of Physics.
Resumo:
Yb:YAG single crystals with Yb doping concentration 5.4, 16.3, 27.1, 53.6, and 100 at.% were grown by the Czochralski process. The effects of Yb concentration on the absorption spectra (190-1 100nm), fluorescence spectra under 940nm and X-ray excitation were studied. The concentration quenching of fluorescence was observed when the Yb doping concentration reaches to as high as 27.1 at.% for Yb:YAG. Under 940 nm excitation, the influence of the self-absorption at 969 and 1029 nrn on the fluorescence spectra is not evident when the Yb doping concentration is as high as 27.1 at.%. However, it can greatly change the shape of fluorescence spectra of Yb:YAG when the Yb doping concentration reaches to above 53.6 at.%. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
High-quality Nd:LuVO4 single crystal was successfully grown by Czochralski method. The assessment of the crystalline quality by the chemical etching method and Conoscope image was reported. The absorption spectra from 300 to 1000 nm and emission spectra from 960 to 1450 nm of Nd: LuVO4 were measured. Laser performance was achieved with Nd:LUVO4 crystal for the transition of F-4(3/2) -> I-4(11/2) (corresponding wavelength 1065.8 nm) in an actively Q-switched operation, and the average output power reached 5.42 W at a pulse repetition frequency (PRF) of 40 kHz under pump power of 18 W, giving an optical conversion efficiency of 30.1%. The pulse energy and peak power reached 138 mu J and 16.2 kW at PRF of 25 kHz under pump power of 14.2 W, and the pulse duration was 8.5 ns. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
kinds of Yb3+- and Na+-codoped CaF2 laser crystal with different Na:Yb ratios of 0, 1.5, and 10 are grown by the temperature gradient technique. Room-temperature absorption, photoluminescence spectra, and fluorescence lifetimes belonging to the transitions between ground state F-2(7/2) and excited state F-2(5/2) of Yb3+ ions in the three crystals are measured to study the effect of Na+. Experimental results show that codoping Na+ ions in different Na:Yb ratios can modulate the spectroscopy and photoluminescence properties of Yb3+ ions in a CaF2 lattice in a large scope. (c) 2005 Optical Society of America
Resumo:
We report on the optical property changes for Ce3+-doped Gd2SiO5 crystal irradiated by a femtosecond (fs) laser. Absorption spectra showed that Ce-related color centers were formed in this crystal after an 800 nm fs laser irradiation. The annealing temperature-dependence of the refractive index and absorption intensity changes have been investigated. Furthermore, a new way of writing overlapped gratings inside the crystal by use of birefringence of fs laser beam in this crystal was proposed. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Sm3+-doped yttrium aluminum perovskite (YAP) single crystal was grown by Czochralski (CZ) method. The absorption and fluorescence spectra along the crystallographic axis b were measured at room temperature. Judd-Ofelt theory was used to calculate the intensity parameters (Omega(t)), the spontaneous emission probability, the branching ratio and the radiative lifetime of the state (4)G(5/2). The peak emission cross-sections were also estimated at 567, 607, and 648 nm wavelengths. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Zinc oxide (ZnO) thin films were grown on the beta-Ga2O3 (100) substrate by pulsed laser deposition (PLD). X-ray diffraction (XRD) indicated that the ZnO films are c-axis oriented. The optical and electrical properties of the films were investigated. The room temperature Photoluminescence (PL) spectrum showed a near band emission at 3.28 eV with two deep level emissions. Optical absorption indicated a visible exciton absorption at room temperature. The as-grown films had good electrical properties with the resistivities as low as 0.02 Omega cm at room temperature. Thus, beta-Ga2O3 (100) substrate is shown to be a suitable substrate for fabricating ZnO film. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Gd2SiO5 (GSO) single crystal codoped with Yb3+ and Er3+ (Abbr. as Er:Yb:GSO) was successfully grown by the Czochralski (CZ) method for the first time and the spectral characteristics were investigated. The absorption and fluorescence spectra were measured. The emission lifetime of the I-4(13/2)-Er-level was measured to be 5.84ms and the emission cross-section at 1529nm was calculated to be 1.03 x 10(-20) cm(2). The results indicate that Er:Yb:GSO is a potential laser material at similar to 1. 55 mu m wavelength region. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Optical properties were investigated of ZnO thin films grown oil (100) gamma-LiAlO2 (LAO) substrates by pulsed laser deposition method. C-axis oriented ZnO film was grown oil (100) LAO substrate at the substrate temperature of 550 degrees C. The transmittances of the films were over 85%. Peaks attributed to excitons were seen in the absorption spectra, indicating that the thin films have high crystallinity. Photoluminescence spectra were observed at room temperature; the peak at 550 urn is ascribed to oxygen vacancies in the ZnO films caused by the diffusion of Li from the substrate into the film during deposition. (c) 2005 Elsevier B.V. All rights reserved.