942 resultados para aPTT assay
Resumo:
Leptospirosis is a globally important zoonotic infection caused by spirochaetes of the genus Leptospira. It is transmitted to humans by direct contact with infected animals or indirectly via contaminated water. It is mainly a problem of the resource-poor developing countries of the tropical and sub-tropical regions of the world but outbreaks due to an increase in travel and recreational activities have been reported in developed and more industrialized areas of the world. Current methods of diagnosis are costly, time-consuming and require the use of specialized laboratory equipment and personnel. The purpose of this paper is to report the validation of the 'Leptorapide®' test (Linnodee Ltd, Northern Ireland) for the diagnosis of human leptospirosis. It is a simple one-step latex agglutination assay performed using equal volumes of serum sample and antigen-bound latex beads. Evidence of leptospiral antibodies is determined within minutes. Agglutination is scored on a scale of 1-5 and the results interpreted using a score card provided with the kit. Validation has been performed with a large sample size obtained from individuals originating from various parts of the world including Brazil and India. The test has shown sensitivity and specificity values of 97·1% and 94·0%, respectively, relative to the microscopic agglutination test. The results demonstrate that Leptorapide offers a cost-effective and accurate alternative to the more historical methods of antibody detection.
Resumo:
The ability of miRNAs to act as diagnostic biomarkers could be expanded by availability of improved methodologies to detect and analyse these molecules. We have therefore developed an assay with the ability to selectively analyse pools of miRNAs, using the specificity of PCR to select targets and the power of NGS to reveal isomiRs of the chosen targets in a total assay time of two days.
Resumo:
The European badger (Meles meles) is a natural reservoir for Mycobacterium bovis, the causative agent of Bovine Tuberculosis, and has consequently been implicated in transmission of the disease to cattle. This study describes application of a novel M. bovis-specific immunochromatographic (lateral flow) assay in combination with immunomagnetic separation (IMS-LFD), to test badger faeces samples. In total, 441 faeces samples from badgers of unknown disease status collected from latrines at 110 badger setts throughout Northern Ireland (NI) and 100 faeces samples from badgers of known infection status from Great Britain (GB) were tested. Faeces (approx. 1g) was homogenised in 9 ml phosphate buffered saline, filtered (70 µm), and then 6-8 ml subjected to the IMS-LFD test. Residual clarified faecal homogenates were subjected to automated IMS followed by MGIT™ liquid culture (AIMS-MGIT™ culture) and qPCR (AIMS-qPCR). Evidence for the presence of M. bovis was obtained for 78 (18%), 61 (14%) and 140 (32%) of 441 NI badger faeces samples, and 10 (10%), 41 (41%) and 56 (56%) of 100 GB badger faeces samples, by IMS-LFD, AIMS-MGIT culture and AIMS-qPCR tests, respectively. The IMS-LFD test was less sensitive than AIMS-qPCR for detection of M. bovis and was, therefore, detecting badgers shedding high numbers of M. bovis in their faeces only. However, these ‘super shedders’ may be primarily responsible for the spread of Bovine Tuberculosis so are, therefore, an important target. This non-invasive test could form the basis of a field surveillance tool to indicate infected badger groups which are actively spreading M. bovis.
Resumo:
There is interest in determining levels of Mycobacterium avium subsp. paratuberculosis (MAP) contamination in milk. The optimal sample preparation for raw cows' milk to ensure accurate enumeration of viable MAP by the peptide-mediated magnetic separation (PMS)-phage assay was determined. Results indicated that milk samples should be refrigerated at 4 C after collection and MAP testing should commence within 24 h, or samples can be frozen at 70 C for up to one month without loss of MAP viability. Use of Bronopol is not advised as MAP viability is affected. The vast majority (>95%) of MAP in raw milk sedimented to the pellet upon centrifugation at 2500 g for 15 min, so this milk fraction should be tested. De-clumping of MAP cells was most effectively achieved by ultrasonication of the resuspended milk pellet on ice in a sonicator bath at 37 kHz for 4 min in ‘Pulse’ mode.
Resumo:
Mixed chimerism may occur more frequently than previously thought following allogeneic bone marrow transplantation and may have implications in terms of relapse, graft-versus-host disease and immune reconstitution. DNA analysis using single or multilocus polymorphic probes cannot reliably discriminate between donor and recipient cells below a level of 10%. We used probe pHY2.1, a cloned segment of tandemly repeated DNA (2000 copies) on the long arm of chromosome Y. A dot blot procedure allowed us to immobilize DNA directly from 50 microliter of peripheral blood or bone marrow. Cross-reactivity was eliminated by hybridization at conditions of extreme stringency (65 degrees C, 50% formamide). Mixing experiments detected male DNA at a level of 0.1% after 10 h exposure. Five patients were studied serially post-bone marrow transplantation. One patient showed mixed chimerism for 12 months, one had complete autologous recovery and the remaining three showed complete engraftment. All results were verified by standard karyotyping on bone marrow cells. This technique is a simple, rapid and sensitive assay for chimerism following sex mismatched bone marrow transplantation.
Resumo:
In the efforts to find an anti-viral treatment for dengue, a simple tryptophan fluorescence-screening assay aimed at identifying dengue domain III envelope (EIII) protein inhibitors was developed. Residue Trp391 of EIII was used as an intrinsic probe to monitor the change in fluorescence of the tryptophan residue upon binding to a peptide. The analysis was based on the electron excitation at 280 nm and fluorescence emission at 300–400 nm of EIII, followed by quenching of fluorescence in the presence of potential peptidic inhibitors coded DS36wt, DS36opt, DN58wt and DN58opt. The present study found that the fluorescence of the recombinant EIII was quenched following the binding of DS36opt, DN58wt and DN58opt ina concentration-dependent manner. Since the λmax for emission remained unchanged, the effect was not dueto a change in the environment of the tryptophan side chain. In contrast, a minimal fluorescence-quenching effect of DS36wt at 20 and 40 µM suggested that the DS36wt does not have any binding ability to EIII. This was supported by a simple native-page gel retardation assay that showed a band shift of EIII domain whenincubated with DS36opt, DN58wt and DN58opt but not with DS36wt. We thus developed a low-cost and convenientspectrophotometric binding assay for the analysis of EIII–peptide interactions in a drug screening application.
Resumo:
Current methods for measuring deoxyribonucleoside triphosphates (dNTPs) employ reagent and labor-intensive assays utilizing radioisotopes in DNA polymerase-based assays and/or chromatography-based approaches. We have developed a rapid and sensitive 96-well fluorescence-based assay to quantify cellular dNTPs utilizing a standard real-time PCR thermocycler. This assay relies on the principle that incorporation of a limiting dNTP is required for primer-extension and Taq polymerase-mediated 5-3' exonuclease hydrolysis of a dual-quenched fluorophore-labeled probe resulting in fluorescence. The concentration of limiting dNTP is directly proportional to the fluorescence generated. The assay demonstrated excellent linearity (R(2) > 0.99) and can be modified to detect between ∼0.5 and 100 pmol of dNTP. The limits of detection (LOD) and quantification (LOQ) for all dNTPs were defined as <0.77 and <1.3 pmol, respectively. The intra-assay and inter-assay variation coefficients were determined to be <4.6% and <10%, respectively with an accuracy of 100 ± 15% for all dNTPs. The assay quantified intracellular dNTPs with similar results obtained from a validated LC-MS/MS approach and successfully measured quantitative differences in dNTP pools in human cancer cells treated with inhibitors of thymidylate metabolism. This assay has important application in research that investigates the influence of pathological conditions or pharmacological agents on dNTP biosynthesis and regulation.
Resumo:
This pilot study presents an environmental DNA (eDNA) assay for sea lamprey Petromyzon marinus and brown trout Salmo trutta, two species of economic and conservation importance in the Republic of Ireland. The results demonstrate the effectiveness of eDNA for assessing presence of low-abundance taxa (here, P. marinus) for environmental managers, and they highlight the potential for assessing relative abundance of rare or invasive freshwater species.
Resumo:
Neutrophil elastase (NE), a biomarker of infection and inflammation, correlates with the severity of several respiratory diseases including chronic obstructive pulmonary disease (COPD). However, it’s detection and quantification in biological samples is confounded by a lack of reliable and robust methodologies. Standard assays using chromogenic or fluorogenic substrates are not specific when added to complex clinical samples containing multiple proteolytic and hydrolytic enzymes which have the ability to hydrolyse the substrate, thereby resulting in an over-estimation of the target protease. Furthermore, ELISA systems measure total protease levels which can be a mixture of latent, active and protease-inhibitor complexes. Therefore, we have developed a novel immunoassay (ProteaseTag™ Active NE Immunoassay) which is selective and specific for the capture of active NE in sputum and Bronchoalveolar Lavage (BAL) in patients with COPD. The objective of this study was to clinically validate ProteaseTag™ Active NE Ultra Immunoassay for the detection of NE in sputum from COPD patients. 20 matched sputum sol samples were collected from 10 COPD patients (M=6, F=4; 73 ± 6 years) during stable and exacerbation phases. Samples were assayed for NE activity utilising both ProteaseTag™ Active NE Ultra Immunoassay and a fluorogenic substrate-based kinetic activity assay. Both assays detected elevated levels of NE in the majority of patients (n=7) during an exacerbation (mean=217.2 μg/ml ±296.6) compared to their stable phase (mean=92.37 μg/ml ±259.8). However, statistical analysis did not show this difference to be significant (p=0.07, ProteaseTag™ Active NE Ultra Immunoassay; p=0.06 kinetic assay), most likely due to the low study number. A highly significant correlation was found between the 2 assay types (p≤0.0001, r=0.996). NE as a primary efficacy endpoint in clinical trials or as a marker of inflammation within the clinic has been hampered by the lack of a robust and simple to use assay. ProteaseTag™ Active NE Immunoassay specifically measures only active NE in clinical samples, is quick and easy to use (< 3 hours) and has no dependency on a kinetic readout. ProteaseTag™ technology is currently being transferred to a lateral flow device for use at Point of Care.
Resumo:
Pseudotype viruses (PVs) are chimeric, replication-deficient virions that mimic wild-type virus entry mechanisms and can be safely employed in neutralisation assays, bypassing the need for high biosafety requirements and performing comparably to established serological assays. However, PV supernatant necessitates -80°C long-term storage and cold-chain maintenance during transport, which limits the scope of dissemination and application throughout resource-limited laboratories. We therefore investigated the effects of lyophilisation on influenza, rabies and Marburg PV stability, with a view to developing a pseudotype virus neutralisation assay (PVNA) based kit suitable for affordable global distribution. Infectivity of each PV was calculated after lyophilisation and immediate reconstitution, as well as subsequent to incubation of freeze-dried pellets at varying temperatures, humidities and timepoints. Integrity of glycoprotein structure following treatment was also assessed by employing lyophilised PVs in downstream PVNAs. In the presence of 0.5M sucrose-PBS cryoprotectant, each freeze-dried pseudotype was stably stored for 4 weeks at up to 37°C and could be neutralised to the same potency as unlyophilised PVs when employed in PVNAs. These results confirm the viability of a freeze-dried PVNA-based kit, which could significantly facilitate low-cost serology for a wide portfolio of emerging infectious viruses.
Resumo:
The present work describes the optimization of a short-term assay, based on the inhibition of the esterase activity of the alga Pseudokirchneriella subcapitata, in a microplate format. The optimization of the staining procedure showed that the incubation of the algal cells with 20 μmolL−1 fluorescein diacetate (FDA) for 40 min allowed discrimination between metabolic active and inactive cells. The shortterm assay was tested using Cu as toxicant. For this purpose, algal cells, in the exponential or stationary phase of growth, were exposed to the heavy metal in growing conditions. After 3 or 6 h, cells were subsequently stained with FDA, using the optimized procedure. For Cu, the 3- and 6-h EC50 values, based on the inhibition of the esterase activity of algal cells in the exponential phase of growth, were 209 and 130 μg L−1, respectively. P. subcapitata cells, in the stationary phase of growth, displayed higher effective concentration values than those observed in the exponential phase. The 3- and 6-h EC50 values for Cu, for cells in the stationary phase, were 443 and 268 μgL−1, respectively. This short-term microplate assay showed to be a rapid endpoint for testing toxicity using the alga P. subcapitata. The small volume required, the simplicity of the assay (no washing steps), and the automatic reading of the fluorescence make the assay particularly well suited for the evaluation of the toxicity of a high number of environmental samples.
Resumo:
We describe a calorimetric assay for detection of voriconazole-resistant Aspergillus fumigatus within 8 h. Among 27 genetically distinct strains, all 21 resistant and all 6 susceptible strains were correctly identified by measurement of fungal heat production in the presence of voriconazole. This proof-of-concept study demonstrates the potential of microcalorimetry for rapid detection of azole resistance in A. fumigatus.