880 resultados para Weak Greedy Algorithms
Resumo:
The goal of this work is to try to create a statistical model, based only on easily computable parameters from the CSP problem to predict runtime behaviour of the solving algorithms, and let us choose the best algorithm to solve the problem. Although it seems that the obvious choice should be MAC, experimental results obtained so far show, that with big numbers of variables, other algorithms perfom much better, specially for hard problems in the transition phase.
Resumo:
General Packet Radio Service (GPRS) mahdollistaa pakettimuotoisen tiedonsiirron GSM-verkossa. Se tarjoaa yhteyden pakettidataverkkoihin, nostaen samalla tiedonsiirtonopeutta radiorajapinnassa. Radioresurssit ovat varattuna vain silloin kun on jotain lähetettävää, tehden täten radioresurssien käytön paljon tehokkaammaksi. Tämä diplomityö keskittyy GPRS protokollaan ja erityisesti sen datapinossa olevaan Radio Link Control (RLC) kerrokseen. RLC-kerros huolehtii GPRS- puhelimen ja tukiaseman välisen yhteyden luotettavuudesta. Työn tavoitteena on tutkia RLC-kerroksen toiminnallisuutta ja sen luotettavuutta heikossa kentässä, sekä selvittää heikon kentän vaikutusta uudelleenlähetyksiin. Työn tuloksena saadaan arvio signaalin voimakkuuden sekä uudelleen lähetysten vaikutuksesta GPRS:n datansiirtonopeuteen. Tämä työ käsittelee myös lyhyesti GSM-järjestelmää, koska lukijan on näin helpompaa ymmärtää myös GPRS-järjestelmän vaatimia teknisiä muutoksia. Tämä diplomityö on tehty osana Nokia Matkapuhelimet Oyj:ssä käynnissä olevaa GPRS tuotekehitysprojektia. Työn tuloksia käytetään testauksen tukena ja niitä on käytetty apuna RLC-kerroksen luotettavuustestauksen suunnittelussa.
Resumo:
In this paper we design and develop several filtering strategies for the analysis of data generated by a resonant bar gravitational wave (GW) antenna, with the goal of assessing the presence (or absence) therein of long-duration monochromatic GW signals, as well as the eventual amplitude and frequency of the signals, within the sensitivity band of the detector. Such signals are most likely generated in the fast rotation of slightly asymmetric spinning stars. We develop practical procedures, together with a study of their statistical properties, which will provide us with useful information on the performance of each technique. The selection of candidate events will then be established according to threshold-crossing probabilities, based on the Neyman-Pearson criterion. In particular, it will be shown that our approach, based on phase estimation, presents a better signal-to-noise ratio than does pure spectral analysis, the most common approach.
Resumo:
BACKGROUND: HIV surveillance requires monitoring of new HIV diagnoses and differentiation of incident and older infections. In 2008, Switzerland implemented a system for monitoring incident HIV infections based on the results of a line immunoassay (Inno-Lia) mandatorily conducted for HIV confirmation and type differentiation (HIV-1, HIV-2) of all newly diagnosed patients. Based on this system, we assessed the proportion of incident HIV infection among newly diagnosed cases in Switzerland during 2008-2013. METHODS AND RESULTS: Inno-Lia antibody reaction patterns recorded in anonymous HIV notifications to the federal health authority were classified by 10 published algorithms into incident (up to 12 months) or older infections. Utilizing these data, annual incident infection estimates were obtained in two ways, (i) based on the diagnostic performance of the algorithms and utilizing the relationship 'incident = true incident + false incident', (ii) based on the window-periods of the algorithms and utilizing the relationship 'Prevalence = Incidence x Duration'. From 2008-2013, 3'851 HIV notifications were received. Adult HIV-1 infections amounted to 3'809 cases, and 3'636 of them (95.5%) contained Inno-Lia data. Incident infection totals calculated were similar for the performance- and window-based methods, amounting on average to 1'755 (95% confidence interval, 1588-1923) and 1'790 cases (95% CI, 1679-1900), respectively. More than half of these were among men who had sex with men. Both methods showed a continuous decline of annual incident infections 2008-2013, totaling -59.5% and -50.2%, respectively. The decline of incident infections continued even in 2012, when a 15% increase in HIV notifications had been observed. This increase was entirely due to older infections. Overall declines 2008-2013 were of similar extent among the major transmission groups. CONCLUSIONS: Inno-Lia based incident HIV-1 infection surveillance proved useful and reliable. It represents a free, additional public health benefit of the use of this relatively costly test for HIV confirmation and type differentiation.
Resumo:
BACKGROUND: Lung clearance index (LCI), a marker of ventilation inhomogeneity, is elevated early in children with cystic fibrosis (CF). However, in infants with CF, LCI values are found to be normal, although structural lung abnormalities are often detectable. We hypothesized that this discrepancy is due to inadequate algorithms of the available software package. AIM: Our aim was to challenge the validity of these software algorithms. METHODS: We compared multiple breath washout (MBW) results of current software algorithms (automatic modus) to refined algorithms (manual modus) in 17 asymptomatic infants with CF, and 24 matched healthy term-born infants. The main difference between these two analysis methods lies in the calculation of the molar mass differences that the system uses to define the completion of the measurement. RESULTS: In infants with CF the refined manual modus revealed clearly elevated LCI above 9 in 8 out of 35 measurements (23%), all showing LCI values below 8.3 using the automatic modus (paired t-test comparing the means, P < 0.001). Healthy infants showed normal LCI values using both analysis methods (n = 47, paired t-test, P = 0.79). The most relevant reason for false normal LCI values in infants with CF using the automatic modus was the incorrect recognition of the end-of-test too early during the washout. CONCLUSION: We recommend the use of the manual modus for the analysis of MBW outcomes in infants in order to obtain more accurate results. This will allow appropriate use of infant lung function results for clinical and scientific purposes. Pediatr Pulmonol. 2015; 50:970-977. © 2015 Wiley Periodicals, Inc.
Resumo:
Weak acid cation exchange (WAC) resins are used in the chromatographic separation of betaine from vinasse, a by-product of sugar industry. The ionic form of the resin determines the elution time of betaine. When a WAC-resin is in hydrogen form, the retention time of betaine is the longest and betaine elutes as the last component of vi-nasse from the chromatographic column. If the feed solution contains salts and its pH is not acidic enough to keep the resin undissociated, the ionic form of the hydrogen form resin starts to alter. Vinasse contains salts and its pH is around 5, it also contains weak acids. To keep the metal ion content (Na/H ratio) of the resin low enough to ensure successful separation of betaine, acid has to be added to either eluent (water) or vinasse. The aim of the present work was to examine by laboratory experiments which option requires less acid. Also the retention mechanism of betaine was investigated by measuring retention volumes of acetic acid and choline in different Na/H ratios of the resin. It was found that the resulting ionic form of the resin is the same regardless of whether the regeneration acid is added to the eluent or the feed solution (vinasse). Be-sides the salt concentration and the pH of vinasse, also the concentration of weak acids in the feed affects the resulting ionic form of the resin. The more buffering capacity vinasse has, the more acid is required to keep the ionic form of the resin desired. Vinasse was found to be quite strong buffer solution, which means relatively high amounts of acid are required to prevent the Na/H ratio from increasing too much. It is known that the retention volume of betaine decreases significantly, when the Na/H ratio increases. This is assumed to occur, because the amount of hydrogen bonds between the carboxylic groups of betaine and the resin decreases. Same behavior was not found with acetic acid. Choline has the same molecular structure as betaine, but instead of carboxylic group it has hydroxide group. The retention volume of choline increased as the Na/H ratio of the resin increased, because of the ion exchange reaction between choline cation and dissociated carboxylic group of the resin. Since the retention behavior of choline on the resin is opposite to the behavior of be-taine, the strong affinity of betaine towards hydrogen form WAC-resin has to be based on its carboxylic group. It is probable that the quaternary ammonium groups also affect the behavior of the carboxylic groups of betaine, causing them to form hydrogen bonds with the carboxylic groups of the resin.
Resumo:
Network virtualisation is considerably gaining attentionas a solution to ossification of the Internet. However, thesuccess of network virtualisation will depend in part on how efficientlythe virtual networks utilise substrate network resources.In this paper, we propose a machine learning-based approachto virtual network resource management. We propose to modelthe substrate network as a decentralised system and introducea learning algorithm in each substrate node and substrate link,providing self-organization capabilities. We propose a multiagentlearning algorithm that carries out the substrate network resourcemanagement in a coordinated and decentralised way. The taskof these agents is to use evaluative feedback to learn an optimalpolicy so as to dynamically allocate network resources to virtualnodes and links. The agents ensure that while the virtual networkshave the resources they need at any given time, only the requiredresources are reserved for this purpose. Simulations show thatour dynamic approach significantly improves the virtual networkacceptance ratio and the maximum number of accepted virtualnetwork requests at any time while ensuring that virtual networkquality of service requirements such as packet drop rate andvirtual link delay are not affected.
Resumo:
In the literature on housing market areas, different approaches can be found to defining them, for example, using travel-to-work areas and, more recently, making use of migration data. Here we propose a simple exercise to shed light on which approach performs better. Using regional data from Catalonia, Spain, we have computed housing market areas with both commuting data and migration data. In order to decide which procedure shows superior performance, we have looked at uniformity of prices within areas. The main finding is that commuting algorithms present more homogeneous areas in terms of housing prices.
Resumo:
Metaheuristic methods have become increasingly popular approaches in solving global optimization problems. From a practical viewpoint, it is often desirable to perform multimodal optimization which, enables the search of more than one optimal solution to the task at hand. Population-based metaheuristic methods offer a natural basis for multimodal optimization. The topic has received increasing interest especially in the evolutionary computation community. Several niching approaches have been suggested to allow multimodal optimization using evolutionary algorithms. Most global optimization approaches, including metaheuristics, contain global and local search phases. The requirement to locate several optima sets additional requirements for the design of algorithms to be effective in both respects in the context of multimodal optimization. In this thesis, several different multimodal optimization algorithms are studied in regard to how their implementation in the global and local search phases affect their performance in different problems. The study concentrates especially on variations of the Differential Evolution algorithm and their capabilities in multimodal optimization. To separate the global and local search search phases, three multimodal optimization algorithms are proposed, two of which hybridize the Differential Evolution with a local search method. As the theoretical background behind the operation of metaheuristics is not generally thoroughly understood, the research relies heavily on experimental studies in finding out the properties of different approaches. To achieve reliable experimental information, the experimental environment must be carefully chosen to contain appropriate and adequately varying problems. The available selection of multimodal test problems is, however, rather limited, and no general framework exists. As a part of this thesis, such a framework for generating tunable test functions for evaluating different methods of multimodal optimization experimentally is provided and used for testing the algorithms. The results demonstrate that an efficient local phase is essential for creating efficient multimodal optimization algorithms. Adding a suitable global phase has the potential to boost the performance significantly, but the weak local phase may invalidate the advantages gained from the global phase.
Resumo:
Identification of order of an Autoregressive Moving Average Model (ARMA) by the usual graphical method is subjective. Hence, there is a need of developing a technique to identify the order without employing the graphical investigation of series autocorrelations. To avoid subjectivity, this thesis focuses on determining the order of the Autoregressive Moving Average Model using Reversible Jump Markov Chain Monte Carlo (RJMCMC). The RJMCMC selects the model from a set of the models suggested by better fitting, standard deviation errors and the frequency of accepted data. Together with deep analysis of the classical Box-Jenkins modeling methodology the integration with MCMC algorithms has been focused through parameter estimation and model fitting of ARMA models. This helps to verify how well the MCMC algorithms can treat the ARMA models, by comparing the results with graphical method. It has been seen that the MCMC produced better results than the classical time series approach.
Resumo:
The purpose of this research is to draw up a clear construction of an anticipatory communicative decision-making process and a successful implementation of a Bayesian application that can be used as an anticipatory communicative decision-making support system. This study is a decision-oriented and constructive research project, and it includes examples of simulated situations. As a basis for further methodological discussion about different approaches to management research, in this research, a decision-oriented approach is used, which is based on mathematics and logic, and it is intended to develop problem solving methods. The approach is theoretical and characteristic of normative management science research. Also, the approach of this study is constructive. An essential part of the constructive approach is to tie the problem to its solution with theoretical knowledge. Firstly, the basic definitions and behaviours of an anticipatory management and managerial communication are provided. These descriptions include discussions of the research environment and formed management processes. These issues define and explain the background to further research. Secondly, it is processed to managerial communication and anticipatory decision-making based on preparation, problem solution, and solution search, which are also related to risk management analysis. After that, a solution to the decision-making support application is formed, using four different Bayesian methods, as follows: the Bayesian network, the influence diagram, the qualitative probabilistic network, and the time critical dynamic network. The purpose of the discussion is not to discuss different theories but to explain the theories which are being implemented. Finally, an application of Bayesian networks to the research problem is presented. The usefulness of the prepared model in examining a problem and the represented results of research is shown. The theoretical contribution includes definitions and a model of anticipatory decision-making. The main theoretical contribution of this study has been to develop a process for anticipatory decision-making that includes management with communication, problem-solving, and the improvement of knowledge. The practical contribution includes a Bayesian Decision Support Model, which is based on Bayesian influenced diagrams. The main contributions of this research are two developed processes, one for anticipatory decision-making, and the other to produce a model of a Bayesian network for anticipatory decision-making. In summary, this research contributes to decision-making support by being one of the few publicly available academic descriptions of the anticipatory decision support system, by representing a Bayesian model that is grounded on firm theoretical discussion, by publishing algorithms suitable for decision-making support, and by defining the idea of anticipatory decision-making for a parallel version. Finally, according to the results of research, an analysis of anticipatory management for planned decision-making is presented, which is based on observation of environment, analysis of weak signals, and alternatives to creative problem solving and communication.
Resumo:
Among the challenges of pig farming in today's competitive market, there is factor of the product traceability that ensures, among many points, animal welfare. Vocalization is a valuable tool to identify situations of stress in pigs, and it can be used in welfare records for traceability. The objective of this work was to identify stress in piglets using vocalization, calling this stress on three levels: no stress, moderate stress, and acute stress. An experiment was conducted on a commercial farm in the municipality of Holambra, São Paulo State , where vocalizations of twenty piglets were recorded during the castration procedure, and separated into two groups: without anesthesia and local anesthesia with lidocaine base. For the recording of acoustic signals, a unidirectional microphone was connected to a digital recorder, in which signals were digitized at a frequency of 44,100 Hz. For evaluation of sound signals, Praat® software was used, and different data mining algorithms were applied using Weka® software. The selection of attributes improved model accuracy, and the best attribute selection was used by applying Wrapper method, while the best classification algorithms were the k-NN and Naive Bayes. According to the results, it was possible to classify the level of stress in pigs through their vocalization.