825 resultados para Water sensitive urban design WSUD
Resumo:
STRIPPING is a software application developed for the automatic design of a randomly packing column where the transfer of volatile organic compounds (VOCs) from water to air can be performed and to simulate it’s behaviour in a steady-state. This software completely purges any need of experimental work for the selection of diameter of the column, and allows a choice, a priori, of the most convenient hydraulic regime for this type of operation. It also allows the operator to choose the model used for the calculation of some parameters, namely between the Eckert/Robbins model and the Billet model for estimating the pressure drop of the gaseous phase, and between the Billet and Onda/Djebbar’s models for the mass transfer. Illustrations of the graphical interface offered are presented.
Resumo:
Trihalomethanes (THMs) are widely referred and studied as disinfection by-products (DBPs). The THMs that are most commonly detected are chloroform (TCM), bromodichloromethane (BDCM), chlorodibromomethane (CDBM), and bromoform (TBM). Several studies regarding the determination of THMs in swimming pool water and air samples have been published. This paper reviews the most recent work in this field, with a special focus on water and air sampling, sample preparation and analytical determination methods. An experimental study has been developed in order to optimize the headspace solid-phasemicroextraction (HS-SPME) conditions of TCM, BDCM, CDBM and TBM from water samples using a 23 factorial design. An extraction temperature of 45 °C, for 25min, and a desorption time of 5 min were found to be the best conditions. Analysis was performed by gas chromatography with an electron capture detector (GC-ECD). The method was successfully applied to a set of 27 swimming pool water samples collected in the Oporto area (Portugal). TCM was the only THM detected with levels between 4.5 and 406.5 μg L−1. Four of the samples exceeded the guideline value for total THMs in swimming pool water (100 μgL−1) indicated by the Portuguese Health Authority.
Resumo:
A atividade humana e industrial usa a água para as suas atividades do quotidiano. A água é um recurso natural escasso cuja qualidade deve ser protegida, defendida, gerida e tratada em conformidade com o seu uso. Nesse âmbito, a gestão das águas prossegue objetivos de proteção da saúde humana e de preservação, proteção e melhoria da qualidade do ambiente[1]. Desde o final do seculo XIX até aos dias de hoje, verificou-se uma forte evolução nos sistemas de tratamento de águas residuais. Esta evolução foi fundamental para dar resposta às maiores exigências de qualidade do efluente tratado. O sistema de lamas ativadas é um dos processos de tratamento biológico das águas residuais mais usados em todo o mundo. Este trabalho consiste no desenvolvimento do projeto de conceção e dimensionamento de uma Estação de Tratamento de Águas Residuais (ETAR) para servir um pequeno aglomerado de cerca de 3200 habitantes equivalentes (hab.eq.), tendo como objetivo o dimensionamento de todas as etapas de tratamento necessárias ao cumprimento da legislação em vigor para a descarga das águas residuais urbanas no meio recetor. O Decreto-lei nº 152/97[2], relativo ao tratamento de águas residuais urbanas, juntamente com o Decreto-lei nº 149/2004[3] que identifica as zonas sensíveis e de zonas menos sensíveis, permitem que as entidades licenciadoras definam o grau de tratamento que a instalação deve possuir tendo em consideração a classificação do meio onde o efluente tratado é descarregado. O Decreto-Lei n.º 135/2009[1] estabelece o regime de identificação, gestão, monitorização e classificação da qualidade das águas balneares, impondo a qualidade microbiológica da água residual tratada mediante o meio recetor, e portanto conseguindo-se assim definir o tratamento de desinfeção a adotar. Resumidamente, a conceção do tratamento focou as seguintes etapas: tratamento preliminar formado por uma unidade compacta de tamisação, desarenador e desengordurador, tratamento secundário por lamas ativadas em regime de arejamento prolongado constituído por dois reatores com cerca de 400 m3 de volume seguido de um decantador com um diâmetro de 9.5 m, tratamento terciário de desinfeção composto por uma microtamisação seguido de desinfeção UV, e a utilização das operações comuns de espessamento e desidratação das lamas produzidas em excesso pelo tratamento, constituída por com um espessador gravítico com 4.6 m de diâmetro, e um filtro banda para a desidratação.
Resumo:
There are two significant reasons for the uncertainties of water demand. On one hand, an evolving technological world is plagued with accelerated change in lifestyles and consumption patterns; and on the other hand, intensifying climate change. Therefore, with an uncertain future, what enables policymakers to define the state of water resources, which are affected by withdrawals and demands? Through a case study based on thirteen years of observation data in the Zayandeh Rud River basin in Isfahan province located in Iran, this paper forecasts a wide range of urban water demand possibilities in order to create a portfolio of plans which could be utilized by different water managers. A comparison and contrast of two existing methods are discussed, demonstrating the Random Walk Methodology, which will be referred to as the â On uncertainty pathâ , because it takes the uncertainties into account and can be recommended to managers. This On Uncertainty Path is composed of both dynamic forecasting method and system simulation. The outcomes show the advantage of such methods particularly for places that climate change will aggravate their water scarcity, such as Iran.
Resumo:
Lipid nanoballoons integrating multiple emulsions of the type water-in-oil-in-water enclose, at least in theory, a biomimetic aqueous-core suitable for housing hydrophilic biomolecules such as proteins, peptides and bacteriophage particles. The research effort entertained in this paper reports a full statistical 23x31 factorial design study (three variables at two levels and one variable at three levels) to optimize biomimetic aqueous-core lipid nanoballoons for housing hydrophilic protein entities. The concentrations of protein, lipophilic and hydrophilic emulsifiers, and homogenization speed were set as the four independent variables, whereas the mean particle hydrodynamic size (HS), zeta potential (ZP) and polydispersity index (PI) were set as the dependent variables. The V23x31 factorial design constructed led to optimization of the higher (+1) and lower (-1) levels, with triplicate testing for the central (0) level, thus producing thirty three experiments and leading to selection of the optimized processing parameters as 0.015% (w/w) protein entity, 0.75% (w/w) lipophilic emulsifier (soybean lecithin) and 0.50% (w/w) hydrophilic emulsifier (poloxamer 188). In the present research effort, statistical optimization and production of protein derivatives encompassing full stabilization of their three-dimensional structure, has been attempted via housing said molecular entities within biomimetic aqueous-core lipid nanoballoons integrating a multiple (W/O/W) emulsion.
Resumo:
This study aimed to evaluate the water depth selection during foraging, the efficiency in prey capture, and the food items captured by Casmerodius albus (Linnaeus, 1758) and Egretta thula (Molina, 1782). The work was conducted at an urban lagoon, Lagoa Rodrigo de Freitas, Rio de Janeiro. Four transects were made each month (two in the morning and two in the afternoon) for six months. When the birds were detected foraging, the water depth and the types of prey captured were recorded. There was no significant relationship between the foraging efficiencies of the two species. However, they differed in relation to the water depth when foraging, and also in the food items captured. Casmerodius albus captured mainly fishes while Egretta thula captured mainly invertebrates. The results suggest that the differences in water depth when foraging and the food items captured allow a differential use of the food resources available by C. albus and E. thula at Lagoa Rodrigo de Freitas.
Resumo:
Switzerland appears to be a privileged place to investigate the urban political ecology of tap water because of the specificities of its political culture and organization and the relative abundance of drinking water in the country. In this paper, we refer to a Foucauldian theorization of power that is increasingly employed in the social sciences, including in human geography and political ecology. We also implement a Foucauldian methodology. In particular, we propose an archaeo-genealogical analysis of discourse to apprehend the links between urban water and the forms of governmentality in Switzerland between 1850 and 1950. Results show that two forms of governmentality, namely biopower and neoliberal governmentality, were present in the water sector in the selected period. Nonetheless, they deviate from the models proposed by Foucault, as their periodization and the classification of the technologies of power related to them prove to be much more blurred than Foucault's work, mainly based on France, might have suggested.
Resumo:
L’objectiu principal és presentar un nou prototipus d’eina per al disseny de les plantes de tractament d’aigües residuals utilitzant models mecànics dinàmics quantificant la incertesa
Resumo:
The aim of our survey was to assess the effect of irrigation water of the microbiological quality on the production chain of lettuce in the Dakar area. Microbiological analysis showed that 35% of irrigation water was contaminated by Salmonella spp. between the two water-types used for irrigation (groundwater and wastewater), no significant difference (p>0.05) in their degree of contamination was found. The incidence of different types of irrigation water on the contamination rate of lettuces from the farm (Pikine and Patte d'Oie) was not different either (p>0.05). However, the contamination rate of lettuce from markets of Dalifort and Grand-Yoff that were supplied by the area of Patte d'Oie was greater than those of Sham and Zinc supplied by Pikine (p<0.05). Comparison of serotypes of Salmonella isolated from irrigation water and lettuce showed that irrigation water may affect the microbiological quality of lettuce. Manures, frequently used as organic amendment in cultivating lettuce are another potential source of contamination. These results showed that lettuce may constitute effective vectors for the transmission of pathogens to consumers. Extensive treatment of the used wastewater and/or composting of manure could considerably reduce these risks.
Resumo:
The n-octanol/water partition coefficient (log Po/w) is a key physicochemical parameter for drug discovery, design, and development. Here, we present a physics-based approach that shows a strong linear correlation between the computed solvation free energy in implicit solvents and the experimental log Po/w on a cleansed data set of more than 17,500 molecules. After internal validation by five-fold cross-validation and data randomization, the predictive power of the most interesting multiple linear model, based on two GB/SA parameters solely, was tested on two different external sets of molecules. On the Martel druglike test set, the predictive power of the best model (N = 706, r = 0.64, MAE = 1.18, and RMSE = 1.40) is similar to six well-established empirical methods. On the 17-drug test set, our model outperformed all compared empirical methodologies (N = 17, r = 0.94, MAE = 0.38, and RMSE = 0.52). The physical basis of our original GB/SA approach together with its predictive capacity, computational efficiency (1 to 2 s per molecule), and tridimensional molecular graphics capability lay the foundations for a promising predictor, the implicit log P method (iLOGP), to complement the portfolio of drug design tools developed and provided by the SIB Swiss Institute of Bioinformatics.
Resumo:
The number of private gardens has increased in recent years, creating a more pleasant urban model, but not without having an environmental impact, including increased energy consumption, which is the focus of this study. The estimation of costs and energy consumption for the generic typology of private urban gardens is based on two simplifying assumptions: square geometry with surface areas from 25 to 500 m2 and hydraulic design with a single pipe. In total, eight sprinkler models have been considered, along with their possible working pressures, and 31 pumping units grouped into 5 series that adequately cover the range of required flow rates and pressures, resultin in 495 hydraulic designs repeated for two climatically different locations in the Spanish Mediterranean area (Girona and Elche). Mean total irrigation costs for the locality with lower water needs (Girona) and greater needs (Elche) were € 2,974 ha-¹ yr-¹ and € 3,383 ha-¹ yr-¹, respectively. Energy costs accounted for 11.4% of the total cost for the first location, and 23.0% for the second. While a suitable choice of the hydraulic elements of the setup is essential, as it may provide average energy savings of 77%, due to the low energy cost in relation to the cost of installation, the potential energy savings do not constitute a significant incentive for the irrigation system design. The low efficiency of the pumping units used in this type of garden is the biggest obstacle and constraint to achieving a high quality energy solution
Resumo:
Microbial processes have been used as indicators of soil quality, due to the high sensitivity to small changes in management to evaluate, e.g., the impact of applying organic residues to the soil. In an experiment in a completely randomized factorial design 6 x 13 + 4, (pot without soil and residue or absolute control) the effect of following organic wastes was evaluated: pulp mill sludge, petrochemical complex sludge, municipal sewage sludge, dairy factory sewage sludge, waste from pulp industry and control (soil without organic waste) after 2, 4, 6, 12, 14, 20, 28, 36, 44, 60, 74, 86, and 98 days of incubation on some soil microbial properties, with four replications. The soil microbial activity was highly sensitive to the carbon/nitrogen ratio of the organic wastes. The amount of mineralized carbon was proportional to the quantity of soil-applied carbon. The average carbon dioxide emanating from the soil with pulp mill sludge, corresponding to soil basal respiration, was 0.141 mg C-CO2 100 g-1 soil h-1. This value is 6.4 times higher than in the control, resulting in a significant increase in the metabolic quotient from 0.005 in the control to 0.025 mg C-CO2 g-1 Cmic h-1 in the soil with pulp mill sludge. The metabolic quotient in the other treatments did not differ from the control (p < 0.01), demonstrating that these organic wastes cause no disturbance in the microbial community.