955 resultados para Water conservation.
Resumo:
Genetic diversity can be used to describe patterns of gene flow within and between local and regional populations. The Florida Everglades experiences seasonal fluctuations in water level that can influence local population extinction and recolonization dynamics. In addition, this expansive wetland has been divided into water management regions by canals and levees. These combined factors can affect genetic diversity and population structure of aquatic organisms in the Everglades. We analyzed allelic variation at six DNA microsatellite loci to examine the population structure of spotted sunfish (Lepomis punctatus) from the Everglades. We tested the hypothesis that recurrent local extinction and recent regional divisions have had an effect on patterns of genetic diversity. No marked differences were observed in comparisons of the heterozygosity values of sites within and among water management units. No evidence of isolation by distance was detected in a gene flow and distance correlation between subpopulations. Confidence intervals for the estimated F-statistic values crossed zero, indicating that there was no significant genetic difference between subpopulations within a region or between regions. Notably, the genetic variation among subpopulations in a water conservation area was greater than variation among regions (Fsp>FPT). These data indicate that the spatial scale of recolonization following local extinction appears to be most important within water management units.
Resumo:
Mass inventories of total Hg (THg) and methylmercury (MeHg) and mass budgets of Hg newly deposited during the 2005 dry and wet seasons were constructed for the Everglades. As a sink for Hg, the Everglades has accumulated 914, 1138, 4931, and 7602 kg of legacy THg in its 4 management units, namely Water Conservation Area (WCA) 1, 2, 3, and the Everglades National Park (ENP), respectively, with most Hg being stored in soil. The current annual Hg inputs account only for 1−2% of the legacy Hg. Mercury transport across management units during a season amounts to 1% or less of Hg storage, except for WCA 2 where inflow inputs can contribute 4% of total MeHg storage. Mass budget suggests distinct spatiality for cycling of seasonally deposited Hg, with significantly lower THg fluxes entering water and floc in ENP than in the WCAs. Floc in WCAs can retain a considerable fraction (around 16%) of MeHg produced from the newly deposited Hg during the wet season. This work is important for evaluating the magnitude of legacy Hg contamination and for predicting the fate of new Hg in the Everglades, and provides a methodological example for large-scale studies on Hg cycling in wetlands.
Resumo:
The adaptive significance of herbivory in nature is not well understood. In order to document the conditions that select for an herbivorous feeding habit, we must first understand how such a diet is maintained, and the consequences of doing so. A few studies have begun to reveal mechanisms of maintaining herbivory (i.e. selective feeding, diet mixing, etc.) and the associated life history responses (i.e. growth, reproduction, etc.) in terrestrial and marine systems; however, studies of this kind are underrepresented in the freshwater literature. In this study, I use the sailfin molly (Poecilia latipinna) as a model organism to examine diet selectivity and the effects of an herbivorous diet on growth. To study food selectivity, sailfin mollies were fed either disturbed or intact periphyton mats from one of three localities within the Everglades (Water Conservation Area 3B, the Gap, or Chekika). Mats are structured with palatable algal species (i.e. greens and diatoms) comprising the inner components of the mat, and unpalatable species (i.e. cyanobacteria) comprising the outer edges. Fish gut contents were analyzed for each treatment and periphyton locality. Results suggest that when provided access to the inner components of the mats, fish preferentially eat more palatable algae. In a second experiment, effects of an herbivorous diet were examined using neonate sailfin mollies. Fish were fed either commercial food flakes, commercial algae flakes, or ground periphyton, and growth rate was measured weekly, from birth to 21 days. Fish fed the commercial diets grew at a faster rate and reached a larger final size than those fed periphyton. These results suggest that a periphyton diet is limited in nutritional elements compared to a pure algae diet and herbivorous organisms feeding upon it may experience negative effects on growth. By studying the costs and benefits of herbivory in a freshwater system, this paper contributes to a larger study of the question of why herbivory would evolve as an adaptation when seemingly inefficient compared to carnivorous and omnivorous diets.
Resumo:
Everglades National Park (ENP) is the last hydrologic unit in the series of impounded marsh units that make up the present-day Everglades. The ENP receives water from upstream Water Conservation Areas via canals and water control structures that are highly regulated for flood control, water supply, wildlife management, concerns about poor water quality and the potential for downstream ecosystem degradation. Recent surveys of surface soils in ENP, designed for random sampling for spatial analysis of soil nutrients, did not sample proximate to inflow structures and thus did not detect increased soil phosphorus associated with these water conveyances. This study specifically addressed these areas in a focused sampling effort at three key inflow points in northeast ENP which revealed elevated soil TP proximate to inflows. Two transects extending down Shark River Slough and one down Taylor Slough (a natural watershed of particular ecological value) were found to have soil TP levels in excess of 500 mg kg−1—a threshold above which P enrichment is indicated. These findings suggest the negative impact of elevated water (P) from surface flows and support the assertion that significant soil TP enrichment is occurring in Taylor Slough and other areas of northeastern ENP.
Resumo:
In 2005 we initiated a project designed to better understand tree island structure and function in the Everglades and the wetlands bordering it. Focus was on the raised portions at the upstream end of the islands, where tropical hardwood species adapted to well-drained conditions usually are the most prominent component of the vegetation. The study design is hierarchical, with four levels; in general, a large number of sites is to be surveyed once for a limited set of parameters, and increasingly small sets of islands are to be sampled more intensively, more frequently, and for more aspects of ecosystem function. During the first year of the 3-year study, we completed surveys of 41 Level 1 (i.e., the least intensive level) islands, and established permanent plots in two and three islands of Levels 2 and 4 intensity, respectively. Tree species richness and structural complexity was highest in Shark Slough “hammocks”, while islands in Northeast Shark Slough and Water Conservation Area 3B, which receive heavy human use, were simpler, more park-like communities. Initial monitoring of soil moisture in Level 4 hammocks indicated considerable local variation, presumably associated with antecedent rainfall and current water levels in the adjacent marsh. Tree islands throughout the study area were impacted significantly by Hurricanes Katrina and Wilma in 2005, but appear to be recovering rapidly. As the project continues to include more islands and repeated measurements, we expect to develop a better grasp of tree island dynamics across the Everglades ecosystem, especially with respect to moisture relations and water levels in the adjacent marsh. The detailed progress report which follows is also available online at http://www.fiu.edu/~serp1/projects/treeislands/tree_islands_2005_annual_report.pd
Resumo:
Hydrologic modifications have negatively impacted the Florida Everglades in numerous significant ways. The compartmentalization of the once continuously flowing system into the Water Conservation Areas (WCAs) caused disruption of the slow natural flow of water south from Lake Okeechobee through the Everglades to Florida Bay. The ponding of water in the WCAs, the linking of water flow to controlled water levels, and the management of water levels for anthropogenic vs. ecological well-being has caused a reduction in the spatial heterogeneity of the Everglades leading to greater uniformity in topography and vegetation. These effects are noticeable as the degradation in structure of the Everglades Ridge and Slough environment and associated Tree Islands. In aquatic systems water flow is of fundamental importance in shaping the structure and function of the ecosystem. The organized patterns of parallel orientation of ridges, sloughs, and tear-drop shaped tree islands along historic flow paths attest to the importance of water movement in structuring this system. Our main objective was to operate and manage the LILA facility to provide a broad potential as a research platform for an integrated group of multidisciplinary, multi-agency scientists collaborating on multifunctional studies aimed primarily at determining the effects of CERP water management scenarios on the ecology of tree islands and ridge and slough habitats. We support Everglades water management, CERP, and the Long-Term Plan by defining hydrologic regimes that sustain healthy tree islands and ridge and slough ecosystems. Information gained through this project will help to reduce the uncertainty of predicting the tree island and ridge and slough ecosystem response to changes in hydrologic conditions. Additionally, we have developed the LILA site as a visual example of Everglades restoration programs in action.
Resumo:
The Everglades is a sub-tropical coastal wetland characterized among others by its hydrological features and deposits of peat. Formation and preservation of organic matter in soils and sediments in this wetland ecosystem is critical for its sustainability and hydrological processes are important divers in the origin, transport and fate of organic matter. With this in mind, organic matter dynamics in the greater Florida Everglades was studied though various organic geochemistry techniques, especially biomarkers, bulk and compound specific δ13C and δD isotope analysis. The main objectives were focused on how different hydrological regimes in this ecosystem control organic matter dynamics, such as the mobilization of particulate organic matter (POM) in freshwater marshes and estuaries, and how organic geochemistry techniques can be applied to reconstruct Everglades paleo-hydrology. For this purpose organic matter in typical vegetation, floc, surface soils, soil cores, and estuarine suspended particulates were characterized in samples selected along hydrological gradients in the Water Conservation Area 3, Shark River Slough and Taylor Slough. ^ This research focused on three general themes: (1) Assessment of the environmental dynamics and source-specific particulate organic carbon export in a mangrove-dominated estuary. (2) Assessment of the origin, transport and fate of organic matter in freshwater marsh. (3) Assessment of historical changes in hydrological conditions in the Everglades (paleo-hydrology) though biomarkes and compound specific isotope analyses. This study reports the first estimate of particulate organic carbon loss from mangrove ecosystems in the Everglades, provides evidence for particulate organic matter transport with regards to the formation of ridge and slough landscapes in the Everglades, and demonstrates the applicability of the combined biomarker and compound-specific stable isotope approach as a means to generate paleohydrological data in wetlands. The data suggests that: (1) Carbon loss from mangrove estuaries is roughly split 50/50 between dissolved and particulate carbon; (2) hydrological remobilization of particulate organic matter from slough to ridge environments may play an important role in the maintenance of the Everglades freshwater landscape; and (3) Historical changes in hydrology have resulted in significant vegetation shifts from historical slough type vegetation to present ridge type vegetation. ^
Resumo:
Large-extent vegetation datasets that co-occur with long-term hydrology data provide new ways to develop biologically meaningful hydrologic variables and to determine plant community responses to hydrology. We analyzed the suitability of different hydrological variables to predict vegetation in two water conservation areas (WCAs) in the Florida Everglades, USA, and developed metrics to define realized hydrologic optima and tolerances. Using vegetation data spatially co-located with long-term hydrological records, we evaluated seven variables describing water depth, hydroperiod length, and number of wet/dry events; each variable was tested for 2-, 4- and 10-year intervals for Julian annual averages and environmentally-defined hydrologic intervals. Maximum length and maximum water depth during the wet period calculated for environmentally-defined hydrologic intervals over a 4-year period were the best predictors of vegetation type. Proportional abundance of vegetation types along hydrological gradients indicated that communities had different realized optima and tolerances across WCAs. Although in both WCAs, the trees/shrubs class was on the drier/shallower end of hydrological gradients, while slough communities occupied the wetter/deeper end, the distribution ofCladium, Typha, wet prairie and Salix communities, which were intermediate for most hydrological variables, varied in proportional abundance along hydrologic gradients between WCAs, indicating that realized optima and tolerances are context-dependent.
Resumo:
Variations in trace element abundances with depth in soils and sediments may be due to natural processes or reflect anthropogenic influences. The depth related variations of five major elements (Fe, Si, Al, Ca and Mg), seventeen trace elements (Mn, Cr, Ti, P, Ni, Ba, Sc, Sr, Sb, Zn, Pb, Cd, Co, V, Be, Cu and Y) and volatile loss patterns were examined for sediment cores from five sites in South Florida (Lake Okeechobee, SFWMD Water Conservation area 3B, F.I.U., the Everglades and Chekika State Recreation Area). Principal component analysis of the chemical data combined with microscopic examination of the soils reveal that depth-related variations can be explained by varying proportions of three natural soil constituents and one anthropogenic component. The results can be used as a geochemical baseline for human influence on South Florida soils.
Resumo:
The Greater Everglades system imparts vital ecosystem services (ES) to South Florida residents including high quality drinking water supplies and a habitat for threatened and endangered species. As a result of the altered Everglades system and regional dynamics, restoration may either improve the provision of these services or impose a tradeoff between enhanced environmental goods and services and competing societal demands. The current study aims at understanding public preferences for restoration and generating willingness to pay (WTP) values for restored ES through the implementation of a discrete choice experiment. A previous study (Milon et al., 1999) generated WTP values amongst Floridians of up to $3.42 -$4.07 billion for full restoration over a 10-year period. We have collected data from 2,905 respondents taken from two samples who participated in an online survey designed to elicit the WTP values for selected ecological and social attributes included in the earlier study (Milon et al. 1999). We estimate that the Florida general public is willing to pay up to $854.1- $954.1 million over 10 years to avoid restrictions on their water usage and up to $90.8- $183.7 million over 10 years to restore the hydrological flow within the Water Conservation Area.
Resumo:
The need for continuous recording rain gauges makes it difficult to determine the rainfall erosivity factor (R-factor) of the (R)USLE model in areas without good temporal data coverage. In mainland Spain, the Nature Conservation Institute (ICONA) determined the R-factor at few selected pluviographs, so simple estimates of the R-factor are definitely of great interest. The objectives of this study were: (1) to identify a readily available estimate of the R-factor for mainland Spain; (2) to discuss the applicability of a single (global) estimate based on analysis of regional results; (3) to evaluate the effect of record length on estimate precision and accuracy; and (4) to validate an available regression model developed by ICONA. Four estimators based on monthly precipitation were computed at 74 rainfall stations throughout mainland Spain. The regression analysis conducted at a global level clearly showed that modified Fournier index (MFI) ranked first among all assessed indexes. Applicability of this preliminary global model across mainland Spain was evaluated by analyzing regression results obtained at a regional level. It was found that three contiguous regions of eastern Spain (Catalonia, Valencian Community and Murcia) could have a different rainfall erosivity pattern, so a new regression analysis was conducted by dividing mainland Spain into two areas: Eastern Spain and plateau-lowland area. A comparative analysis concluded that the bi-areal regression model based on MFI for a 10-year record length provided a simple, precise and accurate estimate of the R-factor in mainland Spain. Finally, validation of the regression model proposed by ICONA showed that R-ICONA index overpredicted the R-factor by approximately 19%.
Resumo:
A presente dissertação tem como objetivo a elaboração de uma proposta de certificação hídrica para edifícios residenciais existentes e em fase de projeto. O desenvolvimento desta certificação incide essencialmente na poupança de água potável nos edifícios, demonstrando que o consumo excessivo da mesma poderá traduzir-se num problema no futuro. O uso eficiente da água assume cada vez mais uma importância acrescida. Neste trabalho enumeram-se alguns países da Europa que, devido a uma má gestão da sua água ou às alterações climáticas (como por exemplo, a diminuição da precipitação), se encontram ou poderão se encontrar em “stress hídrico”. É apresentado o Programa Nacional para o Uso Eficiente da Água, fazendo-se referência aos principais objetivos do programa e às medidas propostas para redução de consumos, nomeadamente no setor urbano e em particular ao nível dos sistemas prediais e dos dispositivos em instalações residenciais. Com base nisto, são apresentados consumos e potenciais reduções com a implantação de equipamentos hidricamente eficientes e sistemas de aproveitamento de águas em algumas moradias. Após uma análise de sistemas de certificação da construção sustentável existentes, nacionais e internacionais, é apresentada uma proposta de certificação hídrica de edifícios residenciais. A proposta de certificação é apresentada com recurso a folhas de cálculo Excel.Assenta essencialmente na quantificação dos consumos dos equipamentos sanitários e cálculo do contributo dos sistemas de aproveitamento de águas, sejam cinzentas ou pluviais. À semelhança da certificação energética, a proposta de certificação hídrica faz uma comparação dos consumos da habitação em avaliação com um modelo criado de referência, propondo depois, algumas melhorias que o consumidor pode adotar para melhorar a eficiência da sua residência.
Resumo:
The main issues related to water conservation in urban centers are the increase in water supply cost, demand growth, pollution and differences in the distribution of water resources. Water conservation, the controlled and efficient use of water, includes both measures as reasonable means of water reuse. Thus, conservation practices are an effective way to meet demand and supply water to new activities and users without jeopardizing the supplying water bodies and preserving the natural environment. This study aims to examine the water management of a shopping mall and the use of rainwater harvesting combined with greywater reuse. For buildings in general, water loss is common due to leaks in the hydraulic and restroom equipment. These losses, which are caused by a high volume of water used and wasted in the system, are often the result of design errors, incorrect maintenance procedures and users' bad habits In southern Brazil, where there is rainfall almost all year long, water shortages occasionally occur, particularly in some winter mouths. One difficulty that appears on rainwater studies is the proper determination of rainwater volume that can be used to address water supply systems. In this work, the simulation method was used to determine this volume. Thus, simulations with the following variables: rainfall, catchment area and water consumption were performed. For mall's hydraulic systems, segmented alternatives are adopted. That is, focusing on the use of rainwater or greywater reuse. Other alternatives of effluent reuse have been slightly discussed due to sanitary issues, those are effluents from toilets and kitchen sinks. The adoption of greywater may be feasible if there is a significant flow of greywater to comply water demand for toilet flushing. The inspections made in this study found that the quantity of sinks was insufficient to supply an adequate amount of water to toilets and urinals. The greywater reuse system was found to be infeasible in terms of demand and supply of water. Conversely, the rainwater harvesting system was entirely feasible and easily supplied water to all restrooms and contributed to the cooling of the air conditioning system with a short payback period. One of the challenges of this work was the need to compare the actual water consumption with a water consumption parameter used in buildings. Thus, a method that addresses the generation of specific consumption indexes for specific activity (like a mall) was used. The water consumption indices showed that this mall has a satisfactory water management program.
Resumo:
Climate change and carbon (C) sequestration are a major focus of research in the twenty-first century. Globally, soils store about 300 times the amount of C that is released per annum through the burning of fossil fuels (Schulze and Freibauer 2005). Land clearing and introduction of agricultural systems have led to rapid declines in soil C reserves. The recent introduction of conservation agricultural practices has not led to a reversing of the decline in soil C content, although it has minimized the rate of decline (Baker et al. 2007; Hulugalle and Scott 2008). Lal (2003) estimated the quantum of C pools in the atmosphere, terrestrial ecosystems, and oceans and reported a “missing C” component in the world C budget. Though not proven yet, this could be linked to C losses through runoff and soil erosion (Lal 2005) and a lack of C accounting in inland water bodies (Cole et al. 2007). Land management practices to minimize the microbial respiration and soil organic C (SOC) decline such as minimum tillage or no tillage were extensively studied in the past, and the soil erosion and runoff studies monitoring those management systems focused on other nutrients such as nitrogen (N) and phosphorus (P).
Resumo:
The purpose of this study was to determine if there was a difference in sorghum yield between the Mossi zai hole and the Gourounsi zai hole, specifically examining the effects of manure and soil water conservation. A study field was created with six different treatments: (1) control with traditional management (no zai holes), (2) traditional management with manure, (3) Mossi zai holes with no manure, (4) Mossi zai holes with manure, (5) Gourounsi zai holes with no manure, and (6) Gourounsi zai holes with manure. Soil moisture readings were taken after each rainstorm (about weekly), soil properties were analyzed before planting and after harvest and above ground biomass was weighed at harvest. Manure was the only variable that significantly increased crop yield. This is different from the original hypothesis; zai holes were thought to be the main driver of increased crop yield in Sahelian West Africa. Zai holes did not have a significant effect on soil moisture.