942 resultados para Variable Sampling Interval Control Charts
Resumo:
This experiment was developed in order to evaluation the efficiency of pheromone to control the pink bollworm and the total time of its release in cotton field. The experiment was installed in field conditions, in Chapadao do Sul/SP/Brazil, from January to April, 1998. The treatments consisted of 2 areas, being one of 30ha, where it was applied the pheromone and another of 10ha that was chosen as control area and did not receive pheromone. In the treated area, the laboratory synthesized sex pheromone (PB-Rope) was used thought of dispensers that allowed the slow and gradual release of the active substance. A total of 250 dispenser per hectare were evenly hand distributed in the area. The dispensers were wrapped around the plants. Both areas (treated area and untreated area) were monitored by delta trap. For evaluation of the boll damage, the treatment area was divided into 4 sub-areas. Twenty five green bolls were collected at random from each sub-area at 48 and 65 days after pheromone treatment. Bolls were cracked open by hand, and number of the bolls with symptoms of pink bollworm attacks was recorded. For evaluation of the productivity four areas were demarcated in each treatment, where all fibers and seeds harvested were weighted. Release rate of pheromone from dispenser was evaluated through of the weigh of the dispensers. Were marked and weighed in analytic scale, 20 dispensers contend the pheromone, being placed 10 dispensers under the cotton plants in treated area and other 10 dispensers in an open area. To every 15 days the dispensers were retired and weighed in analytic scale and soon after put back in the field in the same places. The results showed that only one application of mating disrupt pheromone, used in a dosage of 250 dispenser/ha, reached 80% of control for pink bollworm. the release period of pheromone from dispenser, after the application, was 120 days.
Resumo:
Throughout this article, it is assumed that the no-central chi-square chart with two stage samplings (TSS Chisquare chart) is employed to monitor a process where the observations from the quality characteristic of interest X are independent and identically normally distributed with mean μ and variance σ2. The process is considered to start with the mean and the variance on target (μ = μ0; σ2 = σ0 2), but at some random time in the future an assignable cause shifts the mean from μ0 to μ1 = μ0 ± δσ0, δ >0 and/or increases the variance from σ0 2 to σ1 2 = γ2σ0 2, γ > 1. Before the assignable cause occurrence, the process is considered to be in a state of statistical control (defined by the in-control state). Similar to the Shewhart charts, samples of size n 0+ 1 are taken from the process at regular time intervals. The samplings are performed in two stages. At the first stage, the first item of the i-th sample is inspected. If its X value, say Xil, is close to the target value (|Xil-μ0|< w0σ 0, w0>0), then the sampling is interrupted. Otherwise, at the second stage, the remaining n0 items are inspected and the following statistic is computed. Wt = Σj=2n 0+1(Xij - μ0 + ξiσ 0)2 i = 1,2 Let d be a positive constant then ξ, =d if Xil > 0 ; otherwise ξi =-d. A signal is given at sample i if |Xil-μ0| > w0σ 0 and W1 > knia:tl, where kChi is the factor used in determining the upper control limit for the non-central chi-square chart. If devices such as go and no-go gauges can be considered, then measurements are not required except when the sampling goes to the second stage. Let P be the probability of deciding that the process is in control and P 1, i=1,2, be the probability of deciding that the process is in control at stage / of the sampling procedure. Thus P = P1 + P 2 - P1P2, P1 = Pr[μ0 - w0σ0 ≤ X ≤ μ0+ w 0σ0] P2=Pr[W ≤ kChi σ0 2], (3) During the in-control period, W / σ0 2 is distributed as a non-central chi-square distribution with n0 degrees of freedom and a non-centrality parameter λ0 = n0d2, i.e. W / σ0 2 - xn0 22 (λ0) During the out-of-control period, W / σ1 2 is distributed as a non-central chi-square distribution with n0 degrees of freedom and a non-centrality parameter λ1 = n0(δ + ξ)2 / γ2 The effectiveness of a control chart in detecting a process change can be measured by the average run length (ARL), which is the speed with which a control chart detects process shifts. The ARL for the proposed chart is easily determined because in this case, the number of samples before a signal is a geometrically distributed random variable with parameter 1-P, that is, ARL = I /(1-P). It is shown that the performance of the proposed chart is better than the joint X̄ and R charts, Furthermore, if the TSS Chi-square chart is used for monitoring diameters, volumes, weights, etc., then appropriate devices, such as go-no-go gauges can be used to decide if the sampling should go to the second stage or not. When the process is stable, and the joint X̄ and R charts are in use, the monitoring becomes monotonous because rarely an X̄ or R value fall outside the control limits. The natural consequence is the user to pay less and less attention to the steps required to obtain the X̄ and R value. In some cases, this lack of attention can result in serious mistakes. The TSS Chi-square chart has the advantage that most of the samplings are interrupted, consequently, most of the time the user will be working with attributes. Our experience shows that the inspection of one item by attribute is much less monotonous than measuring four or five items at each sampling.
Resumo:
This paper presents necessary and sufficient conditions for the following problem: given a linear time invariant plant G(s) = N(s)D(s)-1 = C(sI - A]-1B, with m inputs, p outputs, p > m, rank(C) = p, rank(B) = rank(CB) = m, £nd a tandem dynamic controller Gc(s) = D c(s)-1Nc(s) = Cc(sI - A c)-1Bc + Dc, with p inputs and m outputs and a constant output feedback matrix Ko ε ℝm×p such that the feedback system is Strictly Positive Real (SPR). It is shown that this problem has solution if and only if all transmission zeros of the plant have negative real parts. When there exists solution, the proposed method firstly obtains Gc(s) in order to all transmission zeros of Gc(s)G(s) present negative real parts and then Ko is found as the solution of some Linear Matrix Inequalities (LMIs). Then, taking into account this result, a new LMI based design for output Variable Structure Control (VSC) of uncertain dynamic plants is presented. The method can consider the following design specifications: matched disturbances or nonlinearities of the plant, output constraints, decay rate and matched and nonmatched plant uncertainties. © 2006 IEEE.
Resumo:
This paper presents two Variable Structure Controllers (VSC) for continuous-time switched plants. It is assumed that the state vector is available for feedback. The proposed control system provides a switching rule and also the variable structure control input. The design is based on Lyapunov-Metzler (LM) inequalities and also on Strictly Positive Real (SPR) systems stability results. The definition of Lyapunov-Metzler-SPR (LMS) systems and its direct application in the design of VSC for switched systems are introduced in this paper. Two examples illustrate the design of the proposed VSC, considering a plant given by a switched system with a switched-state control law and two linear time-invariant systems, that are not controllable and also can not be stabilized with state feedback. ©2008 IEEE.
Resumo:
We consider an infinite horizon optimal impulsive control problems for which a given cost function is minimized by choosing control strategies driving the state to a point in a given closed set C ∞. We present necessary conditions of optimality in the form of a maximum principle for which the boundary condition of the adjoint variable is such that non-degeneracy due to the fact that the time horizon is infinite is ensured. These conditions are given for conventional systems in a first instance and then for impulsive control problems. They are proved by considering a family of approximating auxiliary interval conventional (without impulses) optimal control problems defined on an increasing sequence of finite time intervals. As far as we know, results of this kind have not been derived previously. © 2010 IFAC.
Resumo:
This paper presents a control method for a class of continuous-time switched systems, using state feedback variable structure controllers. The method is applied to the control of a two-cell dc-dc buck converter and a control circuit design using the software PSpice is proposed. The design is based on Lyapunov-Metzler-SPR systems and the performance of the resulting control system is superior to that afforded by a recently-proposed alternative sliding-mode control technique. The dc-dc power converters are very used in industrial applications, for instance, in power systems of hybrid electric vehicles and aircrafts. Good results were obtained and the proposed design is also inexpensive because it uses electric components that can be easily found for the hardware implementation. Future researches on the subject include the hardware validation of the dc-dc converter controller and the robust control design of switched systems, with structural failures. © 2011 IEEE.
Resumo:
This paper presents a control method for a class of continuous-time switched systems, using state feedback variable structure controllers. The method is applied to the control of a non-trivial dc-dc power converter and a simple and inexpensive control circuit design, that was simulated using the software PSpice, is proposed. The design is based on Lyapunov-Metzler-SPR systems and the performance of the resulting control system is superior to that afforded by a recently proposed alternative sliding-mode control technique. © 2011 IFAC.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The number of electronic devices connected to agricultural machinery is increasing to support new agricultural practices tasks related to the Precision Agriculture such as spatial variability mapping and Variable Rate Technology (VRT). The Distributed Control System (DCS) is a suitable solution for decentralization of the data acquisition system and the Controller Area Network (CAN) is the major trend among the embedded communications protocols for agricultural machinery and vehicles. The application of soil correctives is a typical problem in Brazil. The efficiency of this correction process is highly dependent of the inputs way at soil and the occurrence of errors affects directly the agricultural yield. To handle this problem, this paper presents the development of a CAN-based distributed control system for a VRT system of soil corrective in agricultural machinery. The VRT system is composed by a tractor-implement that applies a desired rate of inputs according to the georeferenced prescription map of the farm field to support PA (Precision Agriculture). The performance evaluation of the CAN-based VRT system was done by experimental tests and analyzing the CAN messages transmitted in the operation of the entire system. The results of the control error according to the necessity of agricultural application allow conclude that the developed VRT system is suitable for the agricultural productions reaching an acceptable response time and application error. The CAN-Based DCS solution applied in the VRT system reduced the complexity of the control system, easing the installation and maintenance. The use of VRT system allowed applying only the required inputs, increasing the efficiency operation and minimizing the environmental impact.
Resumo:
This work addresses the solution to the problem of robust model predictive control (MPC) of systems with model uncertainty. The case of zone control of multi-variable stable systems with multiple time delays is considered. The usual approach of dealing with this kind of problem is through the inclusion of non-linear cost constraint in the control problem. The control action is then obtained at each sampling time as the solution to a non-linear programming (NLP) problem that for high-order systems can be computationally expensive. Here, the robust MPC problem is formulated as a linear matrix inequality problem that can be solved in real time with a fraction of the computer effort. The proposed approach is compared with the conventional robust MPC and tested through the simulation of a reactor system of the process industry.
Resumo:
We show how to construct a topological Markov map of the interval whose invariant probability measure is the stationary law of a given stochastic chain of infinite order. In particular we characterize the maps corresponding to stochastic chains with memory of variable length. The problem treated here is the converse of the classical construction of the Gibbs formalism for Markov expanding maps of the interval.
Resumo:
Immigrants from high-burden countries and HIV-coinfected individuals are risk groups for tuberculosis (TB) in countries with low TB incidence. Therefore, we studied their role in transmission of Mycobacterium tuberculosis in Switzerland. We included all TB patients from the Swiss HIV Cohort and a sample of patients from the national TB registry. We identified molecular clusters by spoligotyping and mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) analysis and used weighted logistic regression adjusted for age and sex to identify risk factors for clustering, taking sampling proportions into account. In total, we analyzed 520 TB cases diagnosed between 2000 and 2008; 401 were foreign born, and 113 were HIV coinfected. The Euro-American M. tuberculosis lineage dominated throughout the study period (378 strains; 72.7%), with no evidence for another lineage, such as the Beijing genotype, emerging. We identified 35 molecular clusters with 90 patients, indicating recent transmission; 31 clusters involved foreign-born patients, and 15 involved HIV-infected patients. Birth origin was not associated with clustering (adjusted odds ratio [aOR], 1.58; 95% confidence interval [CI], 0.73 to 3.43; P = 0.25, comparing Swiss-born with foreign-born patients), but clustering was reduced in HIV-infected patients (aOR, 0.49; 95% CI, 0.26 to 0.93; P = 0.030). Cavitary disease, male sex, and younger age were all associated with molecular clustering. In conclusion, most TB patients in Switzerland were foreign born, but transmission of M. tuberculosis was not more common among immigrants and was reduced in HIV-infected patients followed up in the national HIV cohort study. Continued access to health services and clinical follow-up will be essential to control TB in this population.
Resumo:
In medical follow-up studies, ordered bivariate survival data are frequently encountered when bivariate failure events are used as the outcomes to identify the progression of a disease. In cancer studies interest could be focused on bivariate failure times, for example, time from birth to cancer onset and time from cancer onset to death. This paper considers a sampling scheme where the first failure event (cancer onset) is identified within a calendar time interval, the time of the initiating event (birth) can be retrospectively confirmed, and the occurrence of the second event (death) is observed sub ject to right censoring. To analyze this type of bivariate failure time data, it is important to recognize the presence of bias arising due to interval sampling. In this paper, nonparametric and semiparametric methods are developed to analyze the bivariate survival data with interval sampling under stationary and semi-stationary conditions. Numerical studies demonstrate the proposed estimating approaches perform well with practical sample sizes in different simulated models. We apply the proposed methods to SEER ovarian cancer registry data for illustration of the methods and theory.