759 resultados para Vaccinium angustifolium


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pollen analysis of samples taken from the core of the water well Fersina 2 (Adige Valley, Prov. Trento, NE Italy) did not reveal any indication of an interglacial or Holocene age of the uppermost 190 m in the sediment sequence deposited in the over-deepened Adige River Valley. The sediment sequence dates entirely from late-glacial times. Four radiocarbon ages of pieces of wood indicate that about 165 m of the upper part of the profile are of Younger Dryas age. The lower part of the sequence dates from the Allerød or Bølling/Allerød and a preceding cold phase, probably the Oldest Dryas. Accordingly the deposition of the sequence took about 2500 or 3500 years and was completed long before the onset of the Neolithic. Our results are in excellent agreement with findings in other formerly glaciated alpine valleys (e.g. the Traun, Salzach and Enns valleys in the Northern Alps). The final depth of the Fersina 2 well is 190 m. It is very likely that the sediment sequence found below this level in the nearby 423 m deep Fersina 1 well was also deposited after the deglaciation of the Adige Valley at the end of the last glacial period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent Pan-Arctic shrub expansion has been interpreted as a response to a warmer climate. However, herbivores can also influence the abundance of shrubs in arctic ecosystems. We addressed these alternative explanations by following the changes in plant community composition during the last 10 years in permanent plots inside and outside exclosures with different mesh sizes that exclude either only reindeer or all mammalian herbivores including voles and lemmings. The exclosures were replicated at three forest and tundra sites at four different locations along a climatic gradient (oceanic to continental) in northern Fennoscandia. Since the last 10 years have been exceptionally warm, we could study how warming has influenced the vegetation in different grazing treatments. Our results show that the abundance of the dominant shrub, Betula nana, has increased during the last decade, but that the increase was more pronounced when herbivores were excluded. Reindeer have the largest effect on shrubs in tundra, while voles and lemmings have a larger effect in the forest. The positive relationship between annual mean temperature and shrub growth in the absence of herbivores and the lack of relationships in grazed controls is another indication that shrub abundance is controlled by an interaction between herbivores and climate. In addition to their effects on taller shrubs (> 0.3 m), reindeer reduced the abundance of lichens, whereas microtine rodents reduced the abundance of dwarf shrubs (< 0.3 m) and mosses. In contrast to short-term responses, competitive interactions between dwarf shrubs and lichens were evident in the long term. These results show that herbivores have to be considered in order to understand how a changing climate will influence tundra ecosystems.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-resolution palynological analysis on annually laminated sediments of Sihailongwan Maar Lake (SHL) provides new insights into the Holocene vegetation and climate dynamics of NE China. The robust chronology of the presented record is based on varve counting and AMS radiocarbon dates from terrestrial plant macro-remains. In addition to the qualitative interpretation of the pollen data, we provide quantitative reconstructions of vegetation and climate based on the method of biomization and weighted averaging partial least squares regression (WA-PLS) technique, respectively. Power spectra were computed to investigate the frequency domain distribution of proxy signals and potential natural periodicities. Pollen assemblages, pollen-derived biome scores and climate variables as well as the cyclicity pattern indicate that NE China experienced significant changes in temperature and moisture conditions during the Holocene. Within the earliest phase of the Holocene, a large-scale reorganization of vegetation occurred, reflecting the reconstructed shift towards higher temperatures and precipitation values and the initial Holocene strengthening and northward expansion of the East Asian summer monsoon (EASM). Afterwards, summer temperatures remain at a high level, whereas the reconstructed precipitation shows an increasing trend until approximately 4000 cal. yr BP. Since 3500 cal. yr BP, temperature and precipitation values decline, indicating moderate cooling and weakening of the EASM. A distinct periodicity of 550-600 years and evidence of a Mid-Holocene transition from a temperature-triggered to a predominantly moisture-triggered climate regime are derived from the power spectra analysis. The results obtained from SHL are largely consistent with other palaeoenvironmental records from NE China, substantiating the regional nature of the reconstructed vegetation and climate patterns. However, the reconstructed climate changes contrast with the moisture evolution recorded in S China and the mid-latitude (semi-)arid regions of N China. Whereas a clear insolation-related trend of monsoon intensity over the Holocene is lacking from the SHL record, variations in the coupled atmosphere-Pacific Ocean system can largely explain the reconstructed changes in NE China.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In der Döberitzer Heide nördlich von Potsdam wurden vegetationsgeschichtliche Untersuchungen durchgeführt. Das Untersuchungsgebiet befindet sich im östlichen Teil der Nauener Platte, die bisher vegetationsgeschichtlich weitgehend unerforscht war. In sechs verschiedenen Mooren wurden acht Bohrungen niedergebracht. Die Bohrkerne wurden stratigraphisch und pollenanalytisch untersucht und für die Radiocarbondatierung beprobt. Die Pollendiagramme ermöglichen die Rekonstruktion der Vegetationsentwicklung der terrestrischen Standorte und der Moore in der Döberitzer Heide in den letzten 14.000 Jahren. Neben einer Revision der Gliederungsprinzipien der spätglazialen Vegetationsentwicklung Brandenburgs und einer vergleichenden Betrachtung der Moorentwicklung in der Döberitzer Heide wurde besonderes Augenmerk auf die Geschichte des Döberitzer Lindenwaldes gerichtet, der einen Sonderfall in der brandenburgischen Vegetation darstellt. Die Untersuchungen boten die Möglichkeit, die Ursachen seiner Entstehung zu klären, Aussagen zu den Perspektiven seiner Entwicklung zu treffen und mögliche Entwicklungspotentiale von Lindenwäldern im Land Brandenburg aufzuzeigen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extreme weather events can have strong negative impacts on species survival and community structure when surpassing lethal thresholds. Extreme, short-lived, winter warming events in the Arctic rapidly melt snow and expose ecosystems to unseasonably warm air (for instance, 2-10 °C for 2-14 days) but upon return to normal winter climate exposes the ecosystem to much colder temperatures due to the loss of insulating snow. Single events have been shown to reduce plant reproduction and increase shoot mortality, but impacts of multiple events are little understood as are the broader impacts on community structure, growth, carbon balance, and nutrient cycling. To address these issues, we simulated week-long extreme winter warming events - using infrared heating lamps and soil warming cables - for 3 consecutive years in a sub-Arctic heathland dominated by the dwarf shrubs Empetrum hermaphroditum, Vaccinium vitis-idaea (both evergreen) and Vaccinium myrtillus (deciduous). During the growing seasons after the second and third winter event, spring bud burst was delayed by up to a week for E. hermaphroditum and V. myrtillus, and berry production reduced by 11-75% and 52-95% for E. hermaphroditum and V. myrtillus, respectively. Greater shoot mortality occurred in E. hermaphroditum (up to 52%), V. vitis-idaea (51%), and V. myrtillus (80%). Root growth was reduced by more than 25% but soil nutrient availability remained unaffected. Gross primary productivity was reduced by more than 50% in the summer following the third simulation. Overall, the extent of damage was considerable, and critically plant responses were opposite in direction to the increased growth seen in long-term summer warming simulations and the 'greening' seen for some arctic regions. Given the Arctic is warming more in winter than summer, and extreme events are predicted to become more frequent, this generates large uncertainty in our current understanding of arctic ecosystem responses to climate change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding plant trait responses to elevated temperatures in the Arctic is critical in light of recent and continuing climate change, especially because these traits act as key mechanisms in climate-vegetation feedbacks. Since 1992, we have artificially warmed three plant communities at Alexandra Fiord, Nunavut, Canada (79°N). In each of the communities, we used open-top chambers (OTCs) to passively warm vegetation by 1-2 °C. In the summer of 2008, we investigated the intraspecific trait responses of five key species to 16 years of continuous warming. We examined eight traits that quantify different aspects of plant performance: leaf size, specific leaf area (SLA), leaf dry matter content (LDMC), plant height, leaf carbon concentration, leaf nitrogen concentration, leaf carbon isotope discrimination (LCID), and leaf d15N. Long-term artificial warming affected five traits, including at least one trait in every species studied. The evergreen shrub Cassiope tetragona responded most frequently (increased leaf size and plant height/decreased SLA, leaf carbon concentration, and LCID), followed by the deciduous shrub Salix arctica (increased leaf size and plant height/decreased SLA) and the evergreen shrub Dryas integrifolia (increased leaf size and plant height/decreased LCID), the forb Oxyria digyna (increased leaf size and plant height), and the sedge Eriophorum angustifolium spp. triste (decreased leaf carbon concentration). Warming did not affect d15N, leaf nitrogen concentration, or LDMC. Overall, growth traits were more sensitive to warming than leaf chemistry traits. Notably, we found that responses to warming were sustained, even after many years of treatment. Our work suggests that tundra plants in the High Arctic will show a multifaceted response to warming, often including taller shoots with larger leaves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The global climate is changing rapidly and Arctic regions are showing responses to recent warming. Responses of tundra ecosystems to climate change have been examined primarily through short-term experimental manipulations, with few studies of long-term ambient change. We investigated changes in above- and belowground biomass of wet sedge tundra to the warming climate of the Canadian High Arctic over the past 25 years. Aboveground standing crop was harvested from five sedge meadow sites and belowground biomass was sampled from one of the sites in the early 1980s and in 2005 using the same methods. Aboveground biomass was on average 158% greater in 2005 than in the early 1980s. The belowground biomass was also much greater in 2005: root biomass increased by 67% and rhizome biomass by 139% since the early 1980s. Dominant species from each functional group (graminoids, shrubs and forbs) showed significant increases in aboveground biomass. Responsive species included the dominant sedge species Carex aquatilis stans, C. membranacea, and Eriophorum angustifolium, as well as the dwarf shrub Salix arctica and the forb Polygonum viviparum. However, diversity measures were not different between the sample years. The greater biomass correlated strongly with increased annual and summer temperatures over the same time period, and was significantly greater than the annual variation in biomass measured in 1980-1983. Increased decomposition and mineralization rates, stimulated by warmer soils, were likely a major cause of the elevated productivity, as no differences in the mass of litter were found between sample periods. Our results are corroborated by published short-term experimental studies, conducted in other wet sedge tundra communities which link warming and fertilization with elevated decomposition, mineralization and tundra productivity. We believe that this is the first study to show responses in High Arctic wet sedge tundra to recent climate change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(Einleitung) Im süddeutschen Jungmoränengebiet wurden während der letzten 25 Jahre verschiedene vegetationsgeschichtliche Arbeiten durchgeführt, die der Untersuchung der Späteiszeit galten. Die wichtigsten von ihnen stammen von G. Lang (1952), A. Bertsch (1961), H. Müller (1962) und H. Schmeidl (1971). Ohne Zweifel müssen die dabei gewonnenen Ergebnisse in anderen Landschaften des nördlichen Alpenvorlandes überprüft und verschiedene Probleme weiterhin verfolgt werden, wie z. B. das der Definition und Umgrenzung der Bölling-Zeit und der Älteren Tundrenzeit s. str. und die Abhängigkeit der Vegetationsentwicklung von der Meereshöhe. Die vorliegende Studie ging auch auf die Notwendigkeit zurück, die spätglazialen Ablagerungen bei dem Tonwerk Kolbermoor nahe Rosenheim, einer der klassischen Stätten der Quartärforschung im nördlichen Alpenvorland, einer vegetationsgeschichtlichen Neubearbeitung zu unterziehen. Die Untersuchungen wurden auf benachbarte Seen, den Sims-See und den Hofsrätter See, ausgedehnt, da die Ergebnisse von Kolbermoor faziell beeinflußt schienen (Niedermoore) und an limnischem Material überprüft werden mußten.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lobsigensee is a small kettle hole lake 15 km north-west of Bern on the Swiss Plateau, at an altitude of 514 m asl. Its surface is 2ha today, its maximum depth 2.7 m; it has no inlet and the overflow functions mainly during snow melting. The area was covered by Rhone ice during the Last Glaciation (map in Fig.2). Local geology, climate and vegetation are summarized in Figure 3A-C, the history of settlement in Figures 5-7. In order to reconstruct the vegetational and environmental history of the lake and its surroundings pollen analysis and other bio- and isotope stratigraphies were applied to twelve profiles cored across the basin with modified Livingstone corers (Fig.3 D). (1) The standard diagram: The central core LQ-90 is described as the standard pollen diagram (Chapter 3) with 10 local pollen assemblage zones of the Late-Glacial (local PAZ Ll to Ll0, from about 16'000(7) to 10'000 years BP) and 20 PAZ of the Holocene (local PAZ L11 to L30), see Figs. 8-10 and 20-24. Local PAZ L 1 to L3 are in the Late-Glacial clay and record the vegetational development after the ice retreat: L1 shows very low pollen concentration and high Pinus percentages due to long-distance transport and reworking; the latter mechanism is corroborated by the findings of thermophilous and pre-Quaternary taxa. Local PAZ L2 has a high di versi ty of non-arboreal pollen (NAP) and reflects the Late-Glacial steppe rich in heliophilous species. Local PAZ L3 is similar but additionally rich in Betula nana and Sal1x, thus reflecting a "shrub tundra". The PAZ L1 to L3 belong to the Oldest Dryas biozone. Local PAZ L4 to L 10 are found in the gyttja of the profundal or in the lake marl of the littoral and record the Late-Glacial forests. L4 is the shrub phase of reforestation with very high Junlperus and rapidly increasing Betula percentages. L5 is the PAZ with a first, L7 with a second dominance of tree-birches, separated by L6 showing a depression in the Betula curve. L4 to L7 can be assigned to the Balling biozone. Possible correlation of the Betula depression to the Older Dryas biozone is discussed. In local PAZ L8 Plnus immigrates and expands. L9 shows a facies difference in that Plnus dominates over Betula in littoral but not in profundal spectra. L8 and L9 belong to the Allerod biozone. In its youngest part the volcanic ash from Laach/Eifel is regularly found (11,000 BP). The local PAZ Ll0 corresponds to the Younger Dryas blozone. The merely slight increase of the NAP indicates that the pine forests of the lowland were not strongly affected by a cooler climate. In order to evaluate the significance of the littoral accumulation of coniferous pollen the littoral profile LQ-150 is compared to the profundal. Radiocarbon stratigraphies derived from different materials are presented in Figures 13 and 14 and in Tables 2 and 3. The hard-water errors in the gyttja samples and the carbonate samples are similar. The samples of terrestrial plant macrofossils are not affected by hard-water errors. Two plateaux of constant age appear in the age-depth relationship; their consequence for biostratigraphy as well as pollen concentration and influx diagrams are discussed. Radiocarbon ages of the Late-Glacial pollen zones are shown in Table 10. The Holocene vegetational history is recorded in the local PAZ L 11 to L30. After a Preboreal (PAZ L11) dominated by pine and birch the expansions of Corylus, Ulmus and Quercus are very rapid. Among these taxa Corylus dominates dur ing the Boreal (PAZ L 12 and L 1 3), whereas the components of the mixed oak forest dominate in the Older Atlantic (PAZ L14 to L16). In the Younger Atlantic (PAZ L 17 to L 19) Fagus and Alnus play an increasing, the mixed oak forest a decreasing role. During the period of local PAZ L19 Neolithic settlers lived on the shore of Lobsigensee. During the Subboreal (PAZ L20 and L21) and the Older Subatlantic (L22 to L25) strong fluctuations of Fagus and often antagonistic peaks of NAP, Alnus, Betula and Corylus can be interpreted as signs of human impact on vegetation. L23 is characterized not only by high values of NAP (especially apophytes and anthropochorous species) but also by the appearance of Juglans, Castanea and Secale which point to the Roman colonization of the area. For a certain period during the Younger Subatlantic (PAZ L26 to L30) the lake was used for retting hemp (Cannabis). Later the dominance of Quercus pollen indicates the importance of wood pastures. The youngest sediments reflect the wide-spread agricultural grass lands and the plantation of Pinus and Picea. Radiocarbon dates for the Holocene are given in Figure 23 and Table 4, the extrapolated ages of the Holocene pollen zones in Table 15. (2) The cross sections: Figures 25 and 26 give a summary of the litho- and palynostratigraphy of the two cross sections. Based on 11 Late-Glacial and 9 Holocene pollen diagrams (in addition to the standard ones), the consistency of the criteria for the definition of the pollen zones is examined in Tables 7 and 8 for the Late-Glacial and in Tables 11 to 14 for the Holocene. Sediment thicknesses across the basin for each pollen zone are presented in these tables as well as in Figures 43 to 45 for the Late-Glacial and in Figures 59 to 65 for the Holocene. Sediment focusing can explain differences between the gyttja cores of the profundal. Focusing is more than compensated for through "stretching" by carbonate precipitation on the littoral terrace. Pollen influx to the cross section are discussed (Chapters 4.1.5. and 4.2.3.). (3) The regional pollen zones: Based on some selected sites between Lake Geneva and Lake Constance regional pollen zones are proposed (Table 16, 17 and 19). (4) Paleoecology: Climatic change in the Late-Glacial can be inferred from Coleoptera, Trichoptera, Chironomidae and d18O of carbonates: a distinct warming is recorded around 12' 600 BP and around 10' 000 BP. The Younger Dryas biozone (10'700-10'000 BP) was the only cooling found in the Late-Glacial. The Betula depression often correlated wi th the Older Dryas biozone was possibl not colder but dryer than the previous period. During the Holocene the lowland site is not very sensitive to the minor climatic changes. Table 22 summarizes climatic and trophic changes before 8'000 BP as deduced from various biostratigraphies studied by a number of authors. Ostracods, Chironomids and fossil pigments indicate that anoxic conditions prevailed during the BoIling (possibly meromixis). Changes in the lake level are illustrated in Figure 74. A first lake-level lowering occurred in the early Holocene (10'000 to 9'000 BP), a second during the Atlantic (about 6'800 to 5'200 BP). The first "shrinking" of the lake volume resulted in a eutrophication recorded by laminations in the profundal and by pigments of Cyanophyceae. The second fall in water level corresponds to an increase of Nymphaeaceae. Human impact can be inferred in three ways: eutrophication of the lake (since the Neolithic), changes of terrestrial vegetation by deforestations (cyclicity of Fagus, see Figures 78 to 80), and enhanced erosion (increasing sedimentation rates by inwashed clay, particularly since the Roman Colonization, see Figures 49 and 81). Summary: This paper was planned as the final report on Lobsigensee. However, a number of issues are not answered but can only be asked more precisely, for example: (1) For the two periods with the highest rates of change, Le. the Bolling and the Preboreal biozones, pollen influx may reflect vegetation dynamics. Detailed investigations of these periods in annually laminated sediments are planned. (2) Biostratigraphies other than palynostratigraphy are needed to estimate the degree of linkage or independence in the development of terrestrial and lacustrine ecosystems. Often our sampling intervals were not identical, thus influencing our temporal resolution. (3) 6180- and 14C-stratigraPhies with high resolution will elucidate the leads and lags of these dynamic periods. Plateaux of constant age in the age-depth relationship have a strong bearing on both biological and geophysical understanding of Late-Glacial and early Holocene developments. (4) Numerical methods applied to the pollen diagrams of the cross section will help to quantify the significance of similari ties and dissimilarities across a single basin (with Prof. Birks). (5) Numerical methods applied to different sites on the Swiss Plateau and on the transect across the Alps will be helpful in evaluating the influence of different environmental factors (with Prof. Birks). (6) A new map 1: 1000 with 50cm-contour lines prov ided by Prof. Zurbuchen will be combined with a grid of cores sampling the transition from lake marl to peat enabling us to calculate paleo-volumes of the lake. This is interesting for the two "shrinking periods" (in Fig. 74A numbers 2-6 and 7-10), both accompanied by eutrophication. The pal eo-volume during the Neoli thic set tlement of the Cortaillod culture linked wi th an est l.mate of trophic change derived from diatoms (Prof. Smol in prep.) could possibly give an indication of the size of the human population of this period. (7) For the period with the antagonism between Fagus peaks and ABC-peaks close collaboration between palynologists, geochemists and archeologists should enable us to determine the influence of prehistoric and historic people on vegetation (collaboration with Prof. Stockli and Prof. Herzig). (8) The core LL-75 taken with a "cold letter box" will be analysed for major and trace elements by Dr. Sturm for 210pb and 137Cs by Prof.von Gunten and for pollen. We will see if our local PAZ L30 really corresponds to the surface sediment and if the small seepage lake reflects modern pollution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A basaltic tephra layer consisting of brownish-olive glass shards. and about 0.2 mm thick. was found in cores from four lakes in northwest Germany. According to pollen analysis it was deposited during the early Boreal period (corresponding to about 8700 BP). The petrographic properties. the geochemical composition and the age agree with those of the Saksunarvatn tephra. which was first found on the Faroe Islands. The position of the tephra layer in the pollen stratigraphy and in the absolute time-scale is discussed. Procedures for locating the tephra in other cores are suggested.