916 resultados para VC-dimension


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a method for the quantification of cellular rejection in endomyocardial biopsies of patients submitted to heart transplant. The model is based on automatic multilevel thresholding, which employs histogram quantification techniques, histogram slope percentage analysis and the calculation of maximum entropy. The structures were quantified with the aid of the multi-scale fractal dimension and lacunarity for the identification of behavior patterns in myocardial cellular rejection in order to determine the most adequate treatment for each case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wu and Yu recently examined point interactions in one dimension in the form of the Fermi pseudo-potential. on the other hand there are point interactions in the form of self-adjoint extensions (SAEs) of the kinetic energy operator. We examine the relationship between the point interactions in these two forms in the one-channel and two-channel cases. In the one-channel case the pseudo-potential leads to the standard three-parameter family of SAEs. In the two-channel case the pseudo-potential furnishes a ten-parameter family of SAEs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A self-contained discussion of integral equations of scattering is presented in the case of centrally symmetric potentials in one dimension, which will facilitate the understanding of more complex scattering integral equations in two and three dimensions. The present discussion illustrates in a simple fashion the concept of partial-wave decomposition, Green's function, Lippmann-Schwinger integral equations of scattering for wave function and transition operator, optical theorem, and unitarity relation. We illustrate the present approach with a Dirac delta potential. (C) 2001 American Association of Physics Teachers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a new type of point interaction in one-dimensional quantum mechanics. It is characterized by a boundary condition at the origin that involves the second and/or higher order derivatives of the wavefunction. The interaction is effectively energy dependent. It leads to a unitary S-matrix for the transmission-reflection problem. The energy dependence of the interaction can be chosen such that any given unitary S-matrix (or the transmission and reflection coefficients) can be reproduced at all energies. Generalization of the results to coupled-channel cases is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a four-parameter family of point interactions in one dimension. This family is a generalization of the usual delta-function potential. We examine a system consisting of many particles of equal masses that are interacting pairwise through such a generalized point interaction. We follow McGuire who obtained exact solutions for the system when the interaction is the delta-function potential. We find exact bound states with the four-parameter family. For the scattering problem, however, we have not been so successful. This is because, as we point out, the condition of no diffraction that is crucial in McGuire's method is nor satisfied except when the four-parameter family is essentially reduced to the delta-function potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using Wu and Yu's pseudo-potential, we construct point interactions in one dimension that are complex but conform to space-time reflection (PT) invariance. The resulting point interactions are equivalent to those obtained by Albeverio, Fei and Kurasov as self-adjoint extensions of the kinetic energy operator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The zero curvature representation for two-dimensional integrable models is generalized to spacetimes of dimension d + 1 by the introduction of a d-form connection. The new generalized zero curvature conditions can be used to represent the equations of motion of some relativistic invariant field theories of physical interest in 2 + 1 dimensions (BF theories, Chern-Simons, 2 + 1 gravity and the CP1 model) and 3 + 1 dimensions (self-dual Yang-Mills theory and the Bogomolny equations). Our approach leads to new methods of constructing conserved currents and solutions. In a submodel of the 2 + 1-dimensional CP1 model, we explicitly construct an infinite number of previously unknown non-trivial conserved currents. For each positive integer spin representation of sl(2) we construct 2j + 1 conserved currents leading to 2j + 1 Lorentz scalar charges. (C) 1998 Elsevier B.V. B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let f : M --> N be a continuous map between two closed n-manifolds such that f(*): H-*(M, Z(2)) --> H-* (N, Z(2)) is an isomorphism. Suppose that M immerses in Rn+k for 5 less than or equal to n < 2k. Then N also immerses in Rn+k. We use techniques of normal bordism theory to prove this result and we show that for a large family of spaces we can replace the homolog condition by the corresponding one in homotopy. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is the first paper in a two-part series devoted to studying the Hausdorff dimension of invariant sets of non-uniformly hyperbolic, non-conformal maps. Here we consider a general abstract model, that we call piecewise smooth maps with holes. We show that the Hausdorff dimension of the repeller is strictly less than the dimension of the ambient manifold. Our approach also provides information on escape rates and dynamical dimension of the repeller.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spectral principle of Connes and Chamseddine is used as a starting point to define a discrete model for Euclidean quantum gravity. Instead of summing over ordinary geometries, we consider the sum over generalized geometries where topology, metric, and dimension can fluctuate. The model describes the geometry of spaces with a countable number n of points, and is related to the Gaussian unitary ensemble of Hermitian matrices. We show that this simple model has two phases. The expectation value , the average number of points in the Universe, is finite in one phase and diverges in the other. We compute the critical point as well as the critical exponent of . Moreover, the space-time dimension delta is a dynamical observable in our model, and plays the role of an order parameter. The computation of is discussed and an upper bound is found, < 2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we present a generalization of an exact sequence of normal bordism groups given in a paper by H. A. Salomonsen (Math. Scand. 32 (1973), 87-111). This is applied to prove that if h : M-n --> Xn+k, 5 less than or equal to n < 2k, is a continuous map between two manifolds and g : M-n --> BO is the classifying map of the stable normal bundle of h such that (h, g)(*) : H-i (M, Z(2)) --> H-i (X x BO, Z(2)) is an isomorphism for i < n - k and an epimorphism for i = n - k, then h bordant to an immersion implies that h is homotopic to an immersion. The second remark complements the result of C. Biasi, D. L. Goncalves and A. K. M. Libardi (Topology Applic. 116 (2001), 293-303) and it concerns conditions for which there exist immersions in the metastable dimension range. Some applications and examples for the main results are also given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate a dilute mixture of bosons and spin-polarized fermions in one dimension. With an attractive Bose-Fermi scattering length the ground state is a self-bound droplet, i.e., a Bose-Fermi bright soliton where the Bose and Fermi clouds are superimposed. We find that the quantum fluctuations stabilize the Bose-Fermi soliton such that the one-dimensional bright soliton exists for any finite attractive Bose-Fermi scattering length. We study density profile and collective excitations of the atomic bright soliton showing that they depend on the bosonic regime involved: mean-field or Tonks-Girardeau.