898 resultados para Unconscious images
Resumo:
China has witnessed fast urban growth in the recent decade. This study analyzes spatio-temporal characteristics of urban expansion in China using satellite images and regionalization methods. Landsat TM images at three time periods, 1990/1991, 1995/1996, and 1999/2000, are interpreted to get 1:100000 vector land use datasets. The study calculates the urban land percentage and urban land expansion index of every 1 km(2) cell throughout China. The study divides China into 27 urban regions to conceive dynamic patterns of urban land changes. Urban development was achieving momentum in the western region, expanding more noticeably than in the previous five years, and seeing an increased growth percentage. Land use dynamic changes reflect the strong impacts of economic growth environments and macro-urban development policies. The paper helps to distinguish the influences of newly market-oriented forces from traditional administrative controls on China's urban expansion. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
P-type copper phthalocyanine (CuPc) and n-type hexadecafluorophthalocyanina-tocopper (F16CuPc) polycrystalline films were investigated by Kelvin probe force microscopy (KPFM). Topographic and corresponding surface potential images are obtained simultaneously. Surface potential images are related with the local work function of crystalline facets and potential barriers at the grain boundaries (GBs) in organic semiconductors. Based on the spatial distribution of surface potential at GBs, donor- and acceptor-like trapping states in the grain boundaries (GBs) of p-CuPc and n-F16CuPc films are confirmed respectively.
Resumo:
A parametric method that extracts the ocean wave directional spectra from synthetic aperture radar (SAR) image is presented. The 180 degrees ambiguity of SAR image and the loss of information beyond the azimuthal cutoff can be overcome with this method. The ocean wave spectra can be obtained from SAR image directly by using iteration inversion mapping method with forward nonlinear mapping. Some numerical experiments have been made by using ERS-1 satellite SAR imagette data. The ocean wave direction retrieved from SAR imagette data is in agreement with the wind direction from the scatterometer data.
Resumo:
Imaging mechanism of underwater topography by SAR and a underwater topography SAR detection model built on the theory of underwater topography detection with SAR image presented by Yuan Yeli are used to detect the underwater topography of Shuangzi Reefs in the Nansha Islands with three scenes of SAR images acquired in different time. Detection results of three SAR images are compared with the chart topography and the detection errors are analyzed. Underwater topography detection experiments of Shuangzi Reefs show that the detection model is practicable. The detection results indicate that SAR images acquired in different time also can be used to detect the underwater topography, and the detection results are affected by the ocean conditions in the SAR acquiring time.
Resumo:
Shipboard X-band radar images acquired on 24 June 2009 are used to study nonlinear internal wave characteristics in the northeastern South China Sea. The studied images show three nonlinear internal waves in a packet. A method based on the Radon Transform technique is introduced to calculate internal wave parameters such as the direction of propagation and internal wave velocity from backscatter images. Assuming that the ocean is a two-layer finite depth system, we can derive the mixed-layer depth by applying the internal wave velocity to the mixed-layer depth formula. Results show reasonably good agreement with in-situ thermistor chain and conductivity-temperature-depth data sets.
Resumo:
In this letter, a new wind-vector algorithm is presented that uses radar backscatter sigma(0) measurements at two adjacent subscenes of RADARSAT-1 synthetic aperture radar (SAR) images, with each subscene having slightly different geometry. Resultant wind vectors are validated using in situ buoy measurements and compared with wind vectors determined from a hybrid wind-retrieval model using wind directions determined by spectral analysis of wind-induced image streaks and observed by colocated QuikSCAT measurements. The hybrid wind-retrieval model consists of CMOD-IFR2 [applicable to C-band vertical-vertical (W) polarization] and a C-band copolarization ratio according to Kirchhoff scattering. The new algorithm displays improved skill in wind-vector estimation for RADARSAT-1 SAR data when compared to conventional wind-retrieval methodology. In addition, unlike conventional methods, the present method is applicable to RADARSAT-1 images both with and without visible streaks. However, this method requires ancillary data such as buoy measurements to resolve the ambiguity in retrieved wind direction.
Resumo:
The eddy covariance technique provides measurements of net ecosystem exchange (NEE) Of CO2 between the atmosphere and terrestrial ecosystems, which is widely used to estimate ecosystem respiration and gross primary production (GPP) at a number Of CO2 eddy flux tower sites. In this paper, canopy-level maximum light use efficiency, a key parameter in the satellite-based Vegetation Photosynthesis Model (VPM), was estimated by using the observed CO2 flux data and photosynthetically active radiation (PAR) data from eddy flux tower sites in an alpine swamp ecosystem, an alpine shrub ecosystem and an alpine meadow ecosystem in Qinghai-Tibetan Plateau, China. The VPM model uses two improved vegetation indices (Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI)) derived from the Moderate Resolution Imaging Spectral radiometer (MODIS) data and climate data at the flux tower sites, and estimated the seasonal dynamics of GPP of the three alpine grassland ecosystems in Qinghai-Tibetan Plateau. The seasonal dynamics of GPP predicted by the VPM model agreed well with estimated GPP from eddy flux towers. These results demonstrated the potential of the satellite-driven VPM model for scaling-up GPP of alpine grassland ecosystems, a key component for the study of the carbon cycle at regional and global scales. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Similarity measurements between 3D objects and 2D images are useful for the tasks of object recognition and classification. We distinguish between two types of similarity metrics: metrics computed in image-space (image metrics) and metrics computed in transformation-space (transformation metrics). Existing methods typically use image and the nearest view of the object. Example for such a measure is the Euclidean distance between feature points in the image and corresponding points in the nearest view. (Computing this measure is equivalent to solving the exterior orientation calibration problem.) In this paper we introduce a different type of metrics: transformation metrics. These metrics penalize for the deformatoins applied to the object to produce the observed image. We present a transformation metric that optimally penalizes for "affine deformations" under weak-perspective. A closed-form solution, together with the nearest view according to this metric, are derived. The metric is shown to be equivalent to the Euclidean image metric, in the sense that they bound each other from both above and below. For Euclidean image metric we offier a sub-optimal closed-form solution and an iterative scheme to compute the exact solution.
Resumo:
The correspondence problem in computer vision is basically a matching task between two or more sets of features. In this paper, we introduce a vectorized image representation, which is a feature-based representation where correspondence has been established with respect to a reference image. This representation has two components: (1) shape, or (x, y) feature locations, and (2) texture, defined as the image grey levels mapped onto the standard reference image. This paper explores an automatic technique for "vectorizing" face images. Our face vectorizer alternates back and forth between computation steps for shape and texture, and a key idea is to structure the two computations so that each one uses the output of the other. A hierarchical coarse-to-fine implementation is discussed, and applications are presented to the problems of facial feature detection and registration of two arbitrary faces.
Resumo:
The Saliency Network proposed by Shashua and Ullman is a well-known approach to the problem of extracting salient curves from images while performing gap completion. This paper analyzes the Saliency Network. The Saliency Network is attractive for several reasons. First, the network generally prefers long and smooth curves over short or wiggly ones. While computing saliencies, the network also fills in gaps with smooth completions and tolerates noise. Finally, the network is locally connected, and its size is proportional to the size of the image. Nevertheless, our analysis reveals certain weaknesses with the method. In particular, we show cases in which the most salient element does not lie on the perceptually most salient curve. Furthermore, in some cases the saliency measure changes its preferences when curves are scaled uniformly. Also, we show that for certain fragmented curves the measure prefers large gaps over a few small gaps of the same total size. In addition, we analyze the time complexity required by the method. We show that the number of steps required for convergence in serial implementations is quadratic in the size of the network, and in parallel implementations is linear in the size of the network. We discuss problems due to coarse sampling of the range of possible orientations. We show that with proper sampling the complexity of the network becomes cubic in the size of the network. Finally, we consider the possibility of using the Saliency Network for grouping. We show that the Saliency Network recovers the most salient curve efficiently, but it has problems with identifying any salient curve other than the most salient one.