966 resultados para Two-point boundary value problems
Resumo:
We consider the Dirichlet boundary-value problem for the Helmholtz equation, Au + x2u = 0, with Imx > 0. in an hrbitrary bounded or unbounded open set C c W. Assuming continuity of the solution up to the boundary and a bound on growth a infinity, that lu(x)l < Cexp (Slxl), for some C > 0 and S~< Imx, we prove that the homogeneous problem has only the trivial salution. With this resnlt we prove uniqueness results for direct and inverse problems of scattering by a bounded or infinite obstacle.
Resumo:
A novel two-stage construction algorithm for linear-in-the-parameters classifier is proposed, aiming at noisy two-class classification problems. The purpose of the first stage is to produce a prefiltered signal that is used as the desired output for the second stage to construct a sparse linear-in-the-parameters classifier. For the first stage learning of generating the prefiltered signal, a two-level algorithm is introduced to maximise the model's generalisation capability, in which an elastic net model identification algorithm using singular value decomposition is employed at the lower level while the two regularisation parameters are selected by maximising the Bayesian evidence using a particle swarm optimization algorithm. Analysis is provided to demonstrate how “Occam's razor” is embodied in this approach. The second stage of sparse classifier construction is based on an orthogonal forward regression with the D-optimality algorithm. Extensive experimental results demonstrate that the proposed approach is effective and yields competitive results for noisy data sets.
Resumo:
We study the scaling properties and Kraichnan–Leith–Batchelor (KLB) theory of forced inverse cascades in generalized two-dimensional (2D) fluids (α-turbulence models) simulated at resolution 8192x8192. We consider α=1 (surface quasigeostrophic flow), α=2 (2D Euler flow) and α=3. The forcing scale is well resolved, a direct cascade is present and there is no large-scale dissipation. Coherent vortices spanning a range of sizes, most larger than the forcing scale, are present for both α=1 and α=2. The active scalar field for α=3 contains comparatively few and small vortices. The energy spectral slopes in the inverse cascade are steeper than the KLB prediction −(7−α)/3 in all three systems. Since we stop the simulations well before the cascades have reached the domain scale, vortex formation and spectral steepening are not due to condensation effects; nor are they caused by large-scale dissipation, which is absent. One- and two-point p.d.f.s, hyperflatness factors and structure functions indicate that the inverse cascades are intermittent and non-Gaussian over much of the inertial range for α=1 and α=2, while the α=3 inverse cascade is much closer to Gaussian and non-intermittent. For α=3 the steep spectrum is close to that associated with enstrophy equipartition. Continuous wavelet analysis shows approximate KLB scaling ℰ(k)∝k−2 (α=1) and ℰ(k)∝k−5/3 (α=2) in the interstitial regions between the coherent vortices. Our results demonstrate that coherent vortex formation (α=1 and α=2) and non-realizability (α=3) cause 2D inverse cascades to deviate from the KLB predictions, but that the flow between the vortices exhibits KLB scaling and non-intermittent statistics for α=1 and α=2.
Resumo:
We study the reconstruction of visual stimuli from spike trains, representing the reconstructed stimulus by a Volterra series up to second order. We illustrate this procedure in a prominent example of spiking neurons, recording simultaneously from the two H1 neurons located in the lobula plate of the fly Chrysomya megacephala. The fly views two types of stimuli, corresponding to rotational and translational displacements. Second-order reconstructions require the manipulation of potentially very large matrices, which obstructs the use of this approach when there are many neurons. We avoid the computation and inversion of these matrices using a convenient set of basis functions to expand our variables in. This requires approximating the spike train four-point functions by combinations of two-point functions similar to relations, which would be true for gaussian stochastic processes. In our test case, this approximation does not reduce the quality of the reconstruction. The overall contribution to stimulus reconstruction of the second-order kernels, measured by the mean squared error, is only about 5% of the first-order contribution. Yet at specific stimulus-dependent instants, the addition of second-order kernels represents up to 100% improvement, but only for rotational stimuli. We present a perturbative scheme to facilitate the application of our method to weakly correlated neurons.
Resumo:
In this work an efficient third order non-linear finite difference scheme for solving adaptively hyperbolic systems of one-dimensional conservation laws is developed. The method is based oil applying to the solution of the differential equation an interpolating wavelet transform at each time step, generating a multilevel representation for the solution, which is thresholded and a sparse point representation is generated. The numerical fluxes obtained by a Lax-Friedrichs flux splitting are evaluated oil the sparse grid by an essentially non-oscillatory (ENO) approximation, which chooses the locally smoothest stencil among all the possibilities for each point of the sparse grid. The time evolution of the differential operator is done on this sparse representation by a total variation diminishing (TVD) Runge-Kutta method. Four classical examples of initial value problems for the Euler equations of gas dynamics are accurately solved and their sparse solutions are analyzed with respect to the threshold parameters, confirming the efficiency of the wavelet transform as an adaptive grid generation technique. (C) 2008 IMACS. Published by Elsevier B.V. All rights reserved.
Resumo:
Recently, an amazing development has been observed in telecommunication systems. Two good examples of this development are observed in mobile communication and aerospace systems. This impressive development is related to the increasing need for receiving and transmitting communication signals. Particularly, this development has required the study of new antennas and filters. This work presents a fullwave analysis of reflectarrays. The considered structures are composed by arrays of rectangular conducting patches printed on multilayer dieletric substrates, that are mounted on a ground plane. The analysis is developed in the spectral domain, using an equivalent transmission line method in combination with Galerkin method. Results for the reflection coefficient of these structures are presented and compared to those available in the literature. A good agreement was observed. Particularly, the developed analysis uses the transmission lines theory in combination with the incident potentials and the field continuity equations, at the structures interfaces, for obtaining the scattered field components expressions as function of the patch surface currents and of the incident field. Galerkin method is used to determine the unknown coefficients in the boundary value problem. Curves for the reflection coefficient of several reflectarray geometries are presented as function of frequency and of the structural parameters
Análise espectral de reflectarrays com substrato de duas camadas dielétricas anisotrópicas uniaxiais
Resumo:
Recently, an amazing development has been observed in telecommunication systems. Two good examples of this development are observed in mobile communication and aerospace systems. This impressive development is related to the increasing need for receiving and transmitting communication signals. Particularly, this development has required the study of new antennas and filters. This work presents a fullwave analysis of reflectarrays. The considered structures are composed by arrays of rectangular conducting patches printed on multilayer dieletric substrates, that are mounted on a ground plane. The analysis is developed in the spectral domain, using an equivalent transmission line method in combination with Galerkin method. Results for the reflection coefficient of these structures are presented and compared to those available in the literature. A good agreement was observed. Particularly, the developed analysis uses the transmission lines theory in combination with the incident potentials and the field continuity equations, at the structures interfaces, for obtaining the scattered field components expressions as function of the patch surface currents and of the incident field. Galerkin method is used to determine the unknown coefficients in the boundary value problem. Curves for the reflection coefficient of several reflectarray geometries are presented as function of frequency and of the structural parameters
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper has two objectives: (i) conducting a literature search on the criteria of uniqueness of solution for initial value problems of ordinary differential equations. (ii) a modification of the method of Euler that seems to be able to converge to a solution of the problem, if the solution is not unique
Resumo:
The lipocalin family is a large group of proteins that exhibits great structural and functional variation both within and among species, including a significant number of animal-derived aeroallergens, such as the bovine BDA20 (major cow dander allergen). This protein is classified as an occupational allergen causing asthma and other work-related allergic disorders among dairy farmers. Using a somatic cell panel the BDA20 gene was assigned to the bovine X chromosome (BTAX) with a significant concordant value of 97% to the previously mapped reference marker MAF45. A radiation hybrid (RH) mapping approach confirmed the assignment of BDA20 to BTAX. Two-point LOD scores showed that BDA20 is linked to XBM451 with a LOD score of 22.1 for a 0 value of 0.03.
Resumo:
The only calculations performed beyond one-loop level in the light-cone gauge make use of the Mandelstam-Leibbrandt (ML) prescription in order to circumvent the notorious gauge dependent poles. Recently we have shown that in the context of negative dimensional integration method (NDIM) such prescription can be altogether abandoned, at least in one-loop order calculations. We extend our approach, now studying two-loop integrals pertaining to two-point functions. While previous works on the subject present only divergent parts for the integrals, we show that our prescriptionless method gives the same results for them, besides finite parts for arbitrary exponents of propagators. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
We present an analytic study of the finite size effects in sine-Gordon model, based on the semi-classical quantization of an appropriate kink background defined on a cylindrical geometry. The quasi-periodic kink is realized as an elliptic function with its real period related to the size of the system. The stability equation for the small quantum fluctuations around this classical background is of Lame type and the corresponding energy eigenvalues are selected inside the allowed bands by imposing periodic boundary conditions. We derive analytical expressions for the ground state and excited states scaling functions, which provide an explicit description of the flow between the IR and UV regimes of the model. Finally, the semiclassical form factors and two-point functions of the basic field and of the energy operator are obtained, completing the semiclassical quantization of the sine-Gordon model on the cylinder. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The well-known two-step fourth-order Numerov method was shown to have better interval of periodicity when made explicit, see Chawla (1984). It is readily verifiable that the improved method still has phase-lag of order 4. We suggest a slight modification from which linear problems could benefit. Phase-lag of any order can be achieved, but only order 6 is derived. © 1991.
Resumo:
We reexamine the two-point function approaches used to study vacuum fluctuation in wedge-shaped regions and conical backgrounds. The appearance of divergent integrals is discussed and circumvented. The issue is considered in the context of a massless scalar field in cosmic string spacetime.