273 resultados para Turbidites


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sediment descriptions and lithostratigraphy (chapter 6.4) NANSEN BASIN The upperrnost 20-50 cm of sedirnents in the Nansen Basin norrnally cornprise soft dark brown, brown-grayish and brown clay. Except for the toprnost clay, the four piston cores retrieved, contained quite different lithologies: a rnuddy diarnicton with outsized clasts (PS2157-6), sandy-silt beds alternating with clay beds (PS2159-6), and silty clay beds of brownish and grayish colours (PS2161-3). Core PS2208-3 was retrieved frorn a plateau on a searnount. The plateau was serni-encircled by hills. The upper 250 cm of this core cornprise brown and olive brown clays. Below these are several sandlayers and a 74 cm thick unit of a sandy mud with rnud-clasts up to 20 cm in diameter. GAKKEL RIDGE The uppermost 20-50 cm of sediments on the Gakkel Ridge comprise soft dark brown, brown, grayish brown clay. In most of the cores there are two horizons of brown clay separated by olive brown clay. The upper horizon is darker. The older stratigraphy is rather varied. Core PS2165-1 contains several thin gray sandlsilt layers, probably distal turbidites. The sarne is found in Core PS2167-1. This core also has a thick (approx. 2 rn) coarse grained turbidite containing large rnud clasts and basaltic rock fragrnents. The color of the turbiditic layers is dark gray. There are several horizons of hernipelagic sandylsilty clays with quite a variety in colours; black, gray, olive, brown, yellowish brown and reddish. The colour variation rnay be due to hydrotherrnal activity or provenance or a shift in redox potential. Cores PS2168-2 and PS2169-1 have typical sequences of very dark gray sandy mud with sharp lower boundaries grading upwards into olive brown clay. Below the lower boundary is often a thin (1-2 cm) gray clay layer. AMUNDSEN BASIN The giant box cores (GKG) provided in most cases excellently preserved sedirnent surfaces which consisted in the entire Amundsen Basin of dark brown to dark grayish brown silty clay with few dropstones and common calcareous microfossils (foraminifers and calcareous nannofossils). The brown and grayish brown color of the sediment surface is a result of the oxidizing conditions at the seafloor due to the rapid renewal of the bottom water rnasses. Planktic forarninifers and calcareous nannofossils are relatively frequent and well preserved despite the rernote location of the basin and its water depths of >4000 rn. Srnear slide descriptions have shown that the surface sedirnents consist dorninantly of clays to silty rnuds with clay rninerals and quartz as the rnost important constituents. The coarse fractions contained besides planktic and benthic forarninifers and coarse clastic rnaterials, rare bivalves, dropstones and mud clasts. The Station PS2190 at the North Pole is a particular good exarnple of the type of sedirnents deposited at the sea floor surface of the Arnundsen Basin, with hornogenous dark brown soft clay covering a sedirnent sequence of highly variable cornposition. Nurnerous giant box cores also provide insight into the detailed lithostratigraphy of the upperrnost sedirnent layers. Twelve box cores have been collected frorn the Arnundsen Basin. Below the youngest unit of 5-20 crn thick silty clays deposits of variable stratigraphies have been found, rnostly consisting of clays or silty clays. In a few instances turbidites have been observed. Benthic forarninifers have not been found in the surface sedirnents. Other fossils were extrernely rare. Bioturbation is weakly developed on all stations. Benthic anirnals seern to live only in and on the upperrnost 2 cm of the uppermost sediment layer. They cornprise amphipods (on all stations) and holothurians, bryozoans, polychaetes, and porifers at one station each. LOMONOSOV RIDGE Sediments from the Lomonosov Ridge show a variety of colors and textures. Following smear slide analyses they are composed mostly of clay minerals and quartz with mica and feldspars, especially in the siltier and sandier parts. Volcanic glass, microcrystalline carbonate, opaque minerals and green amphibole are occasional accessories. The sediments from the Lomonosov Ridge show a noticeable difference from sediments collected from the surrounding basins. Lomonosov Ridge sediments are richer in silt and sand than basin sediments. Occasional turbidites occur in ridge sediments but these must be of entirely local origin. The ridge sediments include frequent layers of "cottage cheese" texture made up of what appear to be small, angular mud clasts of a variety of colors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sediment and interstitial water samples recovered during DSDP Leg 93 at Site 603 (lower continental rise off Cape Hatteras) were analyzed for a series of geochemical facies indicators to elucidate the nature and origin of the sedimentary material. Special emphasis was given to middle Cretaceous organic-matter-rich turbidite sequences of Aptian to Turanian age. Organic carbon content ranges from nil in pelagic claystone samples to 4.2% (total rock) in middle Cretaceous carbonaceous mudstones of turbiditic origin. The organic matter is of marine algal origin with significant contributions of terrigenous matter via turbidites. Maturation indices (vitrinite reflectance) reveal that the terrestrial humic material is reworked. Maturity of autochthonous material (i.e., primary vitrinite) falls in the range of 0.3 to 0.6% Carbohydrate, hydrocarbon, and microscopic investigations reveal moderate to high microbial degradation. Unlike deep-basin black shales of the South and North Atlantic, organic-carbon-rich members of the Hatteras Formation lack trace metal enrichment. Dissolved organic carbon (DOC) in interstitial water samples ranges from 34.4 ppm in a sandstone sample to 126.2 ppm in an organic-matter-rich carbonaceous claystone sample. One to two percent of DOC is carbohydratecarbon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coring during Integrated Ocean Drilling Program Expeditions 315, 316, and 333 recovered turbiditic sands from the forearc Kumano Basin (Site C0002), a Quaternary slope basin (Site C0018), and uplifted trench wedge (Site C0006) along the Kumano Transect of the Nankai Trough accretionary wedge offshore of southwest Japan. The compositions of the submarine turbiditic sands here are investigated in terms of bulk and heavy mineral modal compositions to identify their provenance and dispersal mechanisms, as they may reflect changes in regional tectonics during the past ca. 1.5 Myrs. The results show a marked change in the detrital signature and heavy mineral composition in the forearc and slope basin facies around 1 Ma. This sudden change is interpreted to reflect a major change in the sand provenance, rather than heavy mineral dissolution and/or diagenetic effects, in response to changing tectonics and sedimentation patterns. In the trench-slope basin, the sands older than 1 Ma were probably eroded from the exposed Cretaceous-Tertiary accretionary complex of the Shimanto Belt and transported via the former course of the Tenryu submarine canyon system, which today enters the Nankai Trough northeast of the study area. In contrast, the high abundance of volcanic lithics and volcanic heavy mineral suites of the sands younger than 1 Ma points to a strong volcanic component of sediment derived from the Izu-Honshu collision zones and probably funnelled to this site through the Suruga Canyon. However, sands in the forearc basin show persistent presence of blue sodic amphiboles across the 1 Ma boundary, indicating continuous flux of sediments from the Kumano/Kinokawa River. This implies that the sands in the older turbidites were transported by transverse flow down the slope. The slope basin facies then switched to reflect longitudinal flow around 1 Ma, when the turbiditic sand tapped a volcanic provenance in the Izu-Honshu collision zone, while the sediments transported transversely became confined in the Kumano Basin. Therefore, the change in the depositional systems around 1 Ma is a manifestation of the decoupling of the sediment routing pattern from transverse to long-distance axial flow in response to forearc high uplift along the megasplay fault.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graywackes and shales of the Bol'shoi Lyakhov Island originally attributed to Mesozoic were subsequently considered based on microfossils as Late Proterozoic in age. At present, these sediments in the greater part of the island are dated back to Permian based on palynological assemblages. In the examined area of the island, this siliciclastic complex is intensely deformed and tectonically juxtaposed with blocks of oceanic and island-arc rocks exhumed along the South Anyui suture. The complex is largely composed of turbidites with members displaying hummocky cross-stratification. Studied mineral and geochemical charac¬teristics of the rocks defined three provenances of clastic material: volcanic island arc, sedimentary cover and/or basement of an ancient platform, and exotic blocks of oceanic and island-arc rocks such as serpentinites and amphibolites. All rock associations represent elements of an orogenic structure that originated by collision of the New Siberian continental block with the Anyui-Svyatoi Nos island arc. Flyschoid sediments accumu¬lated in a foredeep in front of the latter structure in the course of collision. Late Jurassic volcanics belonging to the Anyui-Svyatoi Nos island arc determine the lower age limit of syncollision siliciclastic rocks. Presence of Late Jurassic zircons in sandstones of the flyschoid sequence in the Bol'shoi Lyakhov Island is confirmed by fission-track dating. The upper age limit is determined by Aptian-Albian postcollision granites and diorites intruding the siliciclastic complex. Consequently, the flyschoid sequence is within stratigraphic range from the terminal Late Jurassic to Neocomian. It appears that Permian age of sediments suggested earlier is based on redeposited organic remains. The same Late Jurassic-Neocomian age and lithology are characteristic of fossiliferous siliciclastic sequences of the Stolbovoi and Malyi Lyakhov islands, the New Siberian Archipelago, and of graywackes in the South Anyui area in the Chukchi Peninsula. All these sediments accumulated in a spacious foredeep that formed in the course the late Cimmerian orogeny along the southern margin of the Arctic conti¬nental block.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Foulden Maar is a highly resolved maar lake deposit from the South Island of New Zealand comprising laminated diatomite punctuated by numerous diatomaceous turbidites. Basaltic clasts found in debris flow deposits at the base of the cored sedimentary sequence yielded two new 40Ar/39Ar dates of 24.51±0.24 Ma and 23.38±0.24 Ma (2sigma). The younger date agrees within error with a previously published 40Ar/39Ar date of 23.17±0.19 Ma from a basaltic dyke adjacent to the maar crater. The diatomite is inferred to have been deposited over several tens of thousands of years in the latest Oligocene/earliest Miocene, and may have overlapped with the period of rapid glaciation and subsequent deglaciation of Antarctica known as the Mi-1 event. Sediment magnetic properties and SEM measurements indicate that the magnetic signal is dominated by pseudo-single domain pyrrhotite. The most likely source of detrital pyrrhotite is schist country rock fragments from the inferred tephra ring created by the phreatomagmatic eruption that formed the maar. Variations in magnetic concentration and lamina thickness indicate a decrease in erosional input and increase in diatom productivity throughout the depositional period, suggesting a long-term (tens of thousands of years) climatic change in New Zealand in the latest Oligocene/earliest Miocene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sr and Nd isotopic compositions of Late Quaternary surface sediment and sediment cores from the south Atlantic and southeast Pacific sectors of the Southern Ocean are used to constrain the provenance and transport mechanisms of their terrigenous component. We report isotopic and mineralogical data for core samples from three localities, the Mid-Atlantic Ridge at 41°S and the northern and southern Scotia Sea. In addition, data for surface sediment samples from the south Atlantic and southeast Pacific sectors of the Southern Ocean are presented. The variations of Sr and Nd isotopic compositions of the bulk sediment samples in all cores were correlated with the magnetic susceptibility of the sediment and with the inferred glacial-interglacial stages. The isotopic data indicate that, during glacial periods, sediment was delivered from continental crust with a shorter residence time than that supplying material during interglacial periods. At the core site near the Mid-Atlantic Ridge, Nd isotopic, combined with mineralogical evidence indicates interglacial period deposition of a relatively high amount of kaolinite and silt with low epsilon-Nd values < -8. The material was probably supplied by North Atlantic Deep Water from low latitudes. For glacial periods, a high contribution of silt and clay with epsilon-Nd > -4.5, probably derived from southern South America, was indicated. The glacial-interglacial shift in sources may be due to either a decreasing influence of North Atlantic Deep Water during glacial times or by a larger contribution of glaciogenic detritus from southern South America. At the core site in the northern Scotia Sea, sediment of interglacial periods is dominated by smectite with epsilon-Nd < - 6 and silt with epsilon-Nd > -4. We suggest that smectite was derived from the Falkland shelf and silt was derived from the Argentinian shelf. During glacial periods, the Argentinian shelf was an important source for silt and chlorite with epsilon-Nd > -4. The contribution from the Falkland shelf seems to have remained similar during glacial and interglacial periods. Hydrographic transport by bottom currents and turbidites could account for the high glacial detrital flux. An evaluation of the significance of an aeolian contribution to deep sea sediment suggests that it plays only a minor role. In the southern Scotia Sea, the Antarctic Peninsula is considered an important source for young material with epsilon-Nd > -4, in particular during glacial periods. During interglacial periods, sediment supply from the Antarctic Peninsula was lower than during glacial times, resulting in a relatively high contribution of old material (epsilon-Nd < -8) from East Antarctica. Deep water currents and icebergs could account for the transport of the old component to the southern Scotia Sea. The accumulation rates of material from the various source regions for glacial times are in agreement with an increase in the strength of the Antarctic Circumpolar Current. The production rate and the circulation pattern of bottom water in the Weddell Sea appear to have remained similar over most of the last 150 kyr.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most authigenic carbonates previously recovered from the Cascadia slope have 87Sr/86Sr signatures that reflect shallow precipitation in equilibrium with coeval seawater. There is also evidence for carbonate formation supported by fluids that have been modified by reactions with the incoming Juan de Fuca plate (87Sr/86Sr = 0.7071; Teichert et al., 2005, doi:10.1016/j.epsl.2005.08.002) or with terrigenous turbidites (87Sr/86Sr = 0.70975 to 0.71279; Sample et al., 1993, doi:10.1130/0091-7613(1993)021<0507:CCICFF>2.3.CO;2). We report on the strontium isotopic composition of carbonates and fluids from IODP Site U1329 and nearby Barkley Canyon (offshore Vancouver Island), which have strontium isotope ratios as low as 0.70539. Whereas the strontium and oxygen isotopic compositions of carbonates from paleoseeps in the uplifted Coast Range forearc indicate formation in ambient bottom seawater, several samples from the Pysht/Sooke Fm. show a 87Sr-depleted signal (87Sr/86Sr = 0.70494 and 0.70511) similar to that of the anomalous Site U1329 and Barkley Canyon carbonates. Our data, when analyzed in the context of published elemental and isotopic composition of these carbonates (Joseph et al., 2012, doi:10.1016/j.palaeo.2013.01.012 ), point to two formation mechanisms: 1) shallow precipitation driven by the anaerobic oxidation of methane (AOM) with d13C values as low as -50 per mil and contemporaneous 87Sr/86Sr seawater ratios, and 2) carbonate precipitation driven by fluids that have circulated through the oceanic crust, which are depleted in 87Sr. Carbonates formed from the second mechanism precipitate both at depth and at sites of deep-sourced fluid seepage on the seafloor. The 87Sr-depleted carbonates and pore fluids found at Barkley Canyon represent migration of a deep, exotic fluid similar to that found in high permeability conglomerate layers at 188 mbsf of Site U1329, and which may have fed paleoseeps in the Pysht/Sooke Fm. These exotic fluids likely reflect interaction with the 52-57 Ma igneous Crescent Terrane, which supplies fluids with high calcium, manganese and strontium enriched in the non-radiogenic nucleide. Tectonic compression and dehydration reactions then force these fluids updip, where they pick up the thermogenic hydrocarbons and 13C-enriched dissolved inorganic carbon that are manifested in fluids and carbonates sampled at Barkley Canyon and at Site U1329. The Crescent Terrane may have sourced cold seeps in this margin since at least the late Oligocene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clay mineral relative abundances in approximately 450 samples from cores recovered during ODP Leg 117 in the Arabian Sea have been used to examine the paleoclimatic, paleoenvironmental, and tectonic histories of the Indus Fan, Owen Ridge, Oman margin, and adjacent continental source regions. Geographic variations in the relative abundances of minerals and correlations with depositional processes support previous interpretations that smectite has been supplied from weathering of the Deccan Traps; illite and chlorite have been supplied either from the Himalayas via marine transport or from the Iran-Makran region by winds; and palygorskite has been supplied from the Arabian peninsula and Somalia by winds. Pleistocene sediments of the Indus Fan record two modes of deposition: turbidites supplied from the Indus drainage and dominated by illite and chlorite, and pelagic carbonates containing smectites and wind-transported palygorskite. Local and regional causes for shifts between these depositional processes cannot be demonstrated conclusively with the data available, but sea-level fluctuations probably exerted a significant control on the rate of turbidite influx. Lower Miocene sediments on the Owen Ridge are also turbidites supplied by the Indus drainage; in the middle Miocene, a shift to pelagic carbonates records the uplift of the Owen Ridge, and is accompanied by the increased relative importance of wind-transported palygorskite. Associations of palygorskite and biosiliceous components in middle to upper Miocene sediments are interpreted to record vigorous monsoonal circulation and accompanying upwelling-produced biological productivity. Mineralogic and geochemical data indicate that light/dark color alternations in upper Miocene sediments on the Owen Ridge record climatic fluctuations, but the climatic significance of similar alternations in Pliocene-Pleistocene sediments is unclear. Palygorskite is the dominant clay on the Oman margin, reflecting proximity to its source areas. On the Oman margin, clay mineral relative abundances are most variable at structurally complex sites, indicating that local depositional settings have been influenced by their tectonic histories since the Miocene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The plasticity characteristics of the Quaternary sediments of the Guatemalan continental margin were determined from five sites drilled during Leg 67 of the Deep Sea Drilling Project. The 64 samples analyzed are from various marine environments, including the Cocos Plate, Middle America Trench, and the trench lower slope to midslope of the Guatemalan continental slope. The sediments are primarily hemipelagic muds and trench-fill turbidites and include quantities of siliceous and calcareous biogenic components. The sediments are generally classified as organic clays of medium to high plasticity, containing micaceous sands and silts, with 14% classed as inorganic clays of medium to high plasticity. High sedimentation rates in Quaternary sediments are the result, in part, of sediment gravity flows that depend upon rheological properties, i.e., sediment plasticity. Mudflows and cohesive debris flows appear to be significant downslope transport mechanisms in these highly plastic sediments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fine-fraction (<63 µm) grain-size analyses of 530 samples from Holes 1095A, 1095B, and 1095D allow assessment of the downhole grain-size distribution at Drift 7. A variety of data processing methods, statistical treatment, and display techniques were used to describe this data set. The downhole fine-fraction grain-size distribution documents significant variations in the average grain-size composition and its cyclic pattern, revealed in five prominent intervals: (1) between 0 and 40 meters composite depth (mcd) (0 and 1.3 Ma), (2) between 40 and 80 mcd (1.3 and 2.4 Ma), (3) between 80 and 220 mcd (2.4 and 6 Ma), (4) between 220 and 360 mcd, and (5) below 360 mcd (prior to 8.1 Ma). In an approach designed to characterize depositional processes at Drift 7, we used statistical parameters determined by the method of moments for the sortable silt fraction to distinguish groups in the grainsize data set. We found three distinct grain-size populations and used these for a tentative environmental interpretation. Population 1 is related to a process in which glacially eroded shelf material was redeposited by turbidites with an ice-rafted debris influence. Population 2 is composed of interglacial turbidites. Population 3 is connected to depositional sequence tops linked to bioturbated sections that, in turn, are influenced by contourite currents and pelagic background sedimentation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Cutri Formation’s, type location, exposed in the NW of Mallorca, Spain has previously been described by Álvaro et al., (1989) and further interpreted by Abbots (1989) unpublished PhD thesis as a base-of-slope carbonate apron. Incorporating new field and laboratory analysis this paper enhances this interpretation. From this analysis, it can be shown without reasonable doubt that the Cutri Formation was deposited in a carbonate base-of-slope environment on the palaeowindward side of a Mid-Jurassic Tethyan platform. Key evidence such as laterally extensive exposures, abundant deposits of calciturbidtes and debris flows amongst hemipelagic deposits strongly support this interpretation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fossil associations from the middle and upper Eocene (Bartonian and Priabonian) sedimentary succession of the Pamplona Basin are described. This succession was accumulated in the western part of the South Pyrenean peripheral foreland basin and extends from deep-marine turbiditic (Ezkaba Sandstone Formation) to deltaic (Pamplona Marl, Ardanatz Sandstone and Ilundain Marl formations) and marginal marine deposits (Gendulain Formation). The micropalaeontological content is high. It is dominated by foraminifera, and common ostracods and other microfossils are also present. The fossil ichnoasssemblages include at least 23 ichnogenera and 28 ichnospecies indicative of Nereites, Cruziana, Glossifungites and ?Scoyenia-Mermia ichnofacies. Body macrofossils of 78 taxa corresponding to macroforaminifera, sponges, corals, bryozoans, brachiopods, annelids, molluscs, arthropods, echinoderms and vertebrates have been identified. Both the number of ichnotaxa and of species (e. g. bryozoans, molluscs and condrichthyans) may be considerably higher. Body fossil assemblages are comparable to those from the Eocene of the Nord Pyrenean area (Basque Coast), and also to those from the Eocene of the west-central and eastern part of South Pyrenean area (Aragon and Catalonia). At the European scale, the molluscs assemblages seem endemic from the Pyrenean area, although several Tethyan (Italy and Alps) and Northern elements (Paris basin and Normandy) have been recorded. Palaeontological data of studied sedimentary units fit well with the shallowing process that throughout the middle and late Eocene occurs in the area, according to the sedimentological and stratigraphical data.