809 resultados para Transformative Learning Theory
Resumo:
The scheduling problem is considered in complexity theory as a NP-hard combinatorial optimization problem. Meta-heuristics proved to be very useful in the resolution of this class of problems. However, these techniques require parameter tuning which is a very hard task to perform. A Case-based Reasoning module is proposed in order to solve the parameter tuning problem in a Multi-Agent Scheduling System. A computational study is performed in order to evaluate the proposed CBR module performance.
Resumo:
Este artigo é uma introdução à teoria do paradigma desconstrutivo de aprendizagem cooperativa. Centenas de estudos provam com evidências o facto de que as estruturas e os processos de aprendizagem cooperativa aumentam o desempenho académico, reforçam as competências de aprendizagem ao longo da vida e desenvolvem competências sociais, pessoais de cada aluno de uma forma mais eficaz e usta, comparativamente às estruturas tradicionais de aprendizagem nas escolas. Enfrentando os desafios dos nossos sistemas educativos, seria interessante elaborar o quadro teórico do discurso da aprendizagem cooperativa, dos últimos 40 anos, a partir de um aspeto prático dentro do contexto teórico e metodológico. Nas últimas décadas, o discurso cooperativo elaborou os elementos práticos e teóricos de estruturas e processos de aprendizagem cooperativa. Gostaríamos de fazer um resumo desses elementos com o objetivo de compreender que tipo de mudanças estruturais podem fazer diferenças reais na prática de ensino e aprendizagem. Os princípios básicos de estruturas cooperativas, os papéis de cooperação e as atitudes cooperativas são os principais elementos que podemos brevemente descrever aqui, de modo a criar um quadro para a compreensão teórica e prática de como podemos sugerir os elementos de aprendizagem cooperativa na nossa prática em sala de aula. Na minha perspetiva, esta complexa teoria da aprendizagem cooperativa pode ser entendida como um paradigma desconstrutivo que fornece algumas respostas pragmáticas para as questões da nossa prática educativa quotidiana, a partir do nível da sala de aula para o nível de sistema educativo, com foco na destruição de estruturas hierárquicas e antidemocráticas de aprendizagem e, criando, ao mesmo tempo, as estruturas cooperativas.
Resumo:
II European Conference on Curriculum Studies. "Curriculum studies: Policies, perspectives and practices”. Porto, FPCEUP, October 16th - 17th.
Resumo:
ECER 2015 "Education and Transition - Contributions from Educational Research", Corvinus University of Budapest from 7 to 11 September 2015.
Resumo:
Este artigo relata o desenvolvimento de um modelo de ensino virtual em curso na Universidade dos Açores. Depois de ter sido adotado na lecionação de disciplinas da área da Teoria e Desenvolvimento Curricular em regime de e-learning e b-learning, o modelo foi, no ano académico de 2014/15, estendido à lecionação de outras disciplinas. Além de descrever o modelo e explicar a sua evolução, o artigo destaca a sua adoção no contexto particular de uma disciplina cuja componente online foi lecionada em circunstâncias especialmente desafiadoras. Neste sentido, explica o processo de avaliação da experiência, discute os seus resultados e sugere pistas de melhoria. Essa avaliação enquadra-se num processo de investigação do design curricular – a metodologia que tem sido usada para estudar o desenvolvimento do modelo.
Resumo:
This Thesis describes the application of automatic learning methods for a) the classification of organic and metabolic reactions, and b) the mapping of Potential Energy Surfaces(PES). The classification of reactions was approached with two distinct methodologies: a representation of chemical reactions based on NMR data, and a representation of chemical reactions from the reaction equation based on the physico-chemical and topological features of chemical bonds. NMR-based classification of photochemical and enzymatic reactions. Photochemical and metabolic reactions were classified by Kohonen Self-Organizing Maps (Kohonen SOMs) and Random Forests (RFs) taking as input the difference between the 1H NMR spectra of the products and the reactants. The development of such a representation can be applied in automatic analysis of changes in the 1H NMR spectrum of a mixture and their interpretation in terms of the chemical reactions taking place. Examples of possible applications are the monitoring of reaction processes, evaluation of the stability of chemicals, or even the interpretation of metabonomic data. A Kohonen SOM trained with a data set of metabolic reactions catalysed by transferases was able to correctly classify 75% of an independent test set in terms of the EC number subclass. Random Forests improved the correct predictions to 79%. With photochemical reactions classified into 7 groups, an independent test set was classified with 86-93% accuracy. The data set of photochemical reactions was also used to simulate mixtures with two reactions occurring simultaneously. Kohonen SOMs and Feed-Forward Neural Networks (FFNNs) were trained to classify the reactions occurring in a mixture based on the 1H NMR spectra of the products and reactants. Kohonen SOMs allowed the correct assignment of 53-63% of the mixtures (in a test set). Counter-Propagation Neural Networks (CPNNs) gave origin to similar results. The use of supervised learning techniques allowed an improvement in the results. They were improved to 77% of correct assignments when an ensemble of ten FFNNs were used and to 80% when Random Forests were used. This study was performed with NMR data simulated from the molecular structure by the SPINUS program. In the design of one test set, simulated data was combined with experimental data. The results support the proposal of linking databases of chemical reactions to experimental or simulated NMR data for automatic classification of reactions and mixtures of reactions. Genome-scale classification of enzymatic reactions from their reaction equation. The MOLMAP descriptor relies on a Kohonen SOM that defines types of bonds on the basis of their physico-chemical and topological properties. The MOLMAP descriptor of a molecule represents the types of bonds available in that molecule. The MOLMAP descriptor of a reaction is defined as the difference between the MOLMAPs of the products and the reactants, and numerically encodes the pattern of bonds that are broken, changed, and made during a chemical reaction. The automatic perception of chemical similarities between metabolic reactions is required for a variety of applications ranging from the computer validation of classification systems, genome-scale reconstruction (or comparison) of metabolic pathways, to the classification of enzymatic mechanisms. Catalytic functions of proteins are generally described by the EC numbers that are simultaneously employed as identifiers of reactions, enzymes, and enzyme genes, thus linking metabolic and genomic information. Different methods should be available to automatically compare metabolic reactions and for the automatic assignment of EC numbers to reactions still not officially classified. In this study, the genome-scale data set of enzymatic reactions available in the KEGG database was encoded by the MOLMAP descriptors, and was submitted to Kohonen SOMs to compare the resulting map with the official EC number classification, to explore the possibility of predicting EC numbers from the reaction equation, and to assess the internal consistency of the EC classification at the class level. A general agreement with the EC classification was observed, i.e. a relationship between the similarity of MOLMAPs and the similarity of EC numbers. At the same time, MOLMAPs were able to discriminate between EC sub-subclasses. EC numbers could be assigned at the class, subclass, and sub-subclass levels with accuracies up to 92%, 80%, and 70% for independent test sets. The correspondence between chemical similarity of metabolic reactions and their MOLMAP descriptors was applied to the identification of a number of reactions mapped into the same neuron but belonging to different EC classes, which demonstrated the ability of the MOLMAP/SOM approach to verify the internal consistency of classifications in databases of metabolic reactions. RFs were also used to assign the four levels of the EC hierarchy from the reaction equation. EC numbers were correctly assigned in 95%, 90%, 85% and 86% of the cases (for independent test sets) at the class, subclass, sub-subclass and full EC number level,respectively. Experiments for the classification of reactions from the main reactants and products were performed with RFs - EC numbers were assigned at the class, subclass and sub-subclass level with accuracies of 78%, 74% and 63%, respectively. In the course of the experiments with metabolic reactions we suggested that the MOLMAP / SOM concept could be extended to the representation of other levels of metabolic information such as metabolic pathways. Following the MOLMAP idea, the pattern of neurons activated by the reactions of a metabolic pathway is a representation of the reactions involved in that pathway - a descriptor of the metabolic pathway. This reasoning enabled the comparison of different pathways, the automatic classification of pathways, and a classification of organisms based on their biochemical machinery. The three levels of classification (from bonds to metabolic pathways) allowed to map and perceive chemical similarities between metabolic pathways even for pathways of different types of metabolism and pathways that do not share similarities in terms of EC numbers. Mapping of PES by neural networks (NNs). In a first series of experiments, ensembles of Feed-Forward NNs (EnsFFNNs) and Associative Neural Networks (ASNNs) were trained to reproduce PES represented by the Lennard-Jones (LJ) analytical potential function. The accuracy of the method was assessed by comparing the results of molecular dynamics simulations (thermal, structural, and dynamic properties) obtained from the NNs-PES and from the LJ function. The results indicated that for LJ-type potentials, NNs can be trained to generate accurate PES to be used in molecular simulations. EnsFFNNs and ASNNs gave better results than single FFNNs. A remarkable ability of the NNs models to interpolate between distant curves and accurately reproduce potentials to be used in molecular simulations is shown. The purpose of the first study was to systematically analyse the accuracy of different NNs. Our main motivation, however, is reflected in the next study: the mapping of multidimensional PES by NNs to simulate, by Molecular Dynamics or Monte Carlo, the adsorption and self-assembly of solvated organic molecules on noble-metal electrodes. Indeed, for such complex and heterogeneous systems the development of suitable analytical functions that fit quantum mechanical interaction energies is a non-trivial or even impossible task. The data consisted of energy values, from Density Functional Theory (DFT) calculations, at different distances, for several molecular orientations and three electrode adsorption sites. The results indicate that NNs require a data set large enough to cover well the diversity of possible interaction sites, distances, and orientations. NNs trained with such data sets can perform equally well or even better than analytical functions. Therefore, they can be used in molecular simulations, particularly for the ethanol/Au (111) interface which is the case studied in the present Thesis. Once properly trained, the networks are able to produce, as output, any required number of energy points for accurate interpolations.
Resumo:
This paper presents a framework for a robotic production line simulation learning environment using Autonomous Ground Vehicles (AGV). An eLearning platform is used as interface with the simulator. The objective is to introduce students to the production robotics area using a familiar tool, an eLearning platform, and a framework that simulates a production line using AGVs. This framework allows students to learn about robotics but also about several areas of industrial management engineering without requiring an extensive prior knowledge on the robotics area. The robotic production line simulation learning environment simulates a production environment using AGVs to transport materials to and from the production line. The simulator allows students to validate the AGV dynamics and provides information about the whole materials supplying system which includes: supply times, route optimization and inventory management. The students are required to address several topics such as: sensors, actuators, controllers and an high level management and optimization software. This simulator was developed with a known open source tool from robotics community: Player/Stage. This tool was extended with several add-ons so that students can be able to interact with a complex simulation environment. These add-ons include an abstraction communication layer that performs events provided by the database server which is programmed by the students. An eLearning platform is used as interface between the students and the simulator. The students can visualize the effects of their instructions/programming in the simulator that they can access via the eLearning platform. The proposed framework aims to allow students from different backgrounds to fully experience robotics in practice by suppressing the huge gap between theory and practice that exists in robotics. Using an eLearning platform eliminates installation problems that can occur from different computers software distribution and makes the simulator accessible by all students at school and at home.
Resumo:
Relatório EPE - Relatório de estágio em Educação Pré-Escolar: O presente relatório foi realizado no âmbito da unidade curricular Prática Pedagógica Supervisionada, inserida no Mestrado em Educação Pré-Escolar e Ensino do 1.º Ciclo do Ensino Básico, da Escola Superior de Educação do Porto, durante o ano letivo 2013/2014, atribuindo qualificação profissional no contexto de pré-escolar. Este documento pretende descrever e analisar o percurso formativo desenvolvido pela mestranda ao longo da sua prática pedagógica supervisionada, numa perspetiva reflexiva sobre a construção dos saberes profissionais para a Educação. Este percurso formativo comprometeu uma atitude investigativa, bem como a mobilização de saberes científicos e legais por forma a articular as vertentes de teoria e prática, perspetivando uma construção integrada dos saberes. A prática pedagógica foi sustentada numa perspetiva construtivista, atribuindo um papel ativo à criança na construção das suas aprendizagens. Esta baseou-se num trabalho de equipa cooperativo, o qual se concretiza através do debate e da partilha de ideias, entre os vários intervenientes da ação, como meio para a transformação da realidade educativa. Ao longo da prática foi, ainda, atribuído um papel fundamental à observação do contexto, sendo esta essencial para a compreensão e conhecimento pleno da criança. Em suma, todo o percurso formativo no qual está englobado a prática pedagógica, levou a uma problematização das questões emergentes da prática, desenvolvendo uma atitude indagadora e reflexiva. Apesar da significante contribuição para a aquisição de competências pessoais e profissionais, o percurso formativo deve ser assumido como uma construção contínua, fundamentado num princípio da aprendizagem ao longo da vida.
Resumo:
Tese de Doutoramento em Tecnologias e Sistemas de Informação
Resumo:
There is currently an increasing demand for robots able to acquire the sequential organization of tasks from social learning interactions with ordinary people. Interactive learning-by-demonstration and communication is a promising research topic in current robotics research. However, the efficient acquisition of generalized task representations that allow the robot to adapt to different users and contexts is a major challenge. In this paper, we present a dynamic neural field (DNF) model that is inspired by the hypothesis that the nervous system uses the off-line re-activation of initial memory traces to incrementally incorporate new information into structured knowledge. To achieve this, the model combines fast activation-based learning to robustly represent sequential information from single task demonstrations with slower, weight-based learning during internal simulations to establish longer-term associations between neural populations representing individual subtasks. The efficiency of the learning process is tested in an assembly paradigm in which the humanoid robot ARoS learns to construct a toy vehicle from its parts. User demonstrations with different serial orders together with the correction of initial prediction errors allow the robot to acquire generalized task knowledge about possible serial orders and the longer term dependencies between subgoals in very few social learning interactions. This success is shown in a joint action scenario in which ARoS uses the newly acquired assembly plan to construct the toy together with a human partner.
Resumo:
Distance learning, Canadian educational system, institution, medial learning, school system Saxony-Anhalt, system theory, qualitative research
Resumo:
Incorporating adaptive learning into macroeconomics requires assumptions about how agents incorporate their forecasts into their decision-making. We develop a theory of bounded rationality that we call finite-horizon learning. This approach generalizes the two existing benchmarks in the literature: Eulerequation learning, which assumes that consumption decisions are made to satisfy the one-step-ahead perceived Euler equation; and infinite-horizon learning, in which consumption today is determined optimally from an infinite-horizon optimization problem with given beliefs. In our approach, agents hold a finite forecasting/planning horizon. We find for the Ramsey model that the unique rational expectations equilibrium is E-stable at all horizons. However, transitional dynamics can differ significantly depending upon the horizon.
Resumo:
This paper develop and estimates a model of demand estimation for environmental public goods which allows for consumers to learn about their preferences through consumption experiences. We develop a theoretical model of Bayesian updating, perform comparative statics over the model, and show how the theoretical model can be consistently incorporated into a reduced form econometric model. We then estimate the model using data collected for two environmental goods. We find that the predictions of the theoretical exercise that additional experience makes consumers more certain over their preferences in both mean and variance are supported in each case.
Resumo:
In the parallel map theory, the hippocampus encodes space with 2 mapping systems. The bearing map is constructed primarily in the dentate gyrus from directional cues such as stimulus gradients. The sketch map is constructed within the hippocampus proper from positional cues. The integrated map emerges when data from the bearing and sketch maps are combined. Because the component maps work in parallel, the impairment of one can reveal residual learning by the other. Such parallel function may explain paradoxes of spatial learning, such as learning after partial hippocampal lesions, taxonomic and sex differences in spatial learning, and the function of hippocampal neurogenesis. By integrating evidence from physiology to phylogeny, the parallel map theory offers a unified explanation for hippocampal function.
Resumo:
The Baldwin effect can be observed if phenotypic learning influences the evolutionary fitness of individuals, which can in turn accelerate or decelerate evolutionary change. Evidence for both learning-induced acceleration and deceleration can be found in the literature. Although the results for both outcomes were supported by specific mathematical or simulation models, no general predictions have been achieved so far. Here we propose a general framework to predict whether evolution benefits from learning or not. It is formulated in terms of the gain function, which quantifies the proportional change of fitness due to learning depending on the genotype value. With an inductive proof we show that a positive gain-function derivative implies that learning accelerates evolution, and a negative one implies deceleration under the condition that the population is distributed on a monotonic part of the fitness landscape. We show that the gain-function framework explains the results of several specific simulation models. We also use the gain-function framework to shed some light on the results of a recent biological experiment with fruit flies.