976 resultados para Temporal models
Resumo:
Spatio-temporal modelling is an area of increasing importance in which models and methods have often been developed to deal with specific applications. In this study, a spatio-temporal model was used to estimate daily rainfall data. Rainfall records from several weather stations, obtained from the Agritempo system for two climatic homogeneous zones, were used. Rainfall values obtained for two fixed dates (January 1 and May 1, 2012) using the spatio-temporal model were compared with the geostatisticals techniques of ordinary kriging and ordinary cokriging with altitude as auxiliary variable. The spatio-temporal model was more than 17% better at producing estimates of daily precipitation compared to kriging and cokriging in the first zone and more than 18% in the second zone. The spatio-temporal model proved to be a versatile technique, adapting to different seasons and dates.
MINING AND VERIFICATION OF TEMPORAL EVENTS WITH APPLICATIONS IN COMPUTER MICRO-ARCHITECTURE RESEARCH
Resumo:
Computer simulation programs are essential tools for scientists and engineers to understand a particular system of interest. As expected, the complexity of the software increases with the depth of the model used. In addition to the exigent demands of software engineering, verification of simulation programs is especially challenging because the models represented are complex and ridden with unknowns that will be discovered by developers in an iterative process. To manage such complexity, advanced verification techniques for continually matching the intended model to the implemented model are necessary. Therefore, the main goal of this research work is to design a useful verification and validation framework that is able to identify model representation errors and is applicable to generic simulators. The framework that was developed and implemented consists of two parts. The first part is First-Order Logic Constraint Specification Language (FOLCSL) that enables users to specify the invariants of a model under consideration. From the first-order logic specification, the FOLCSL translator automatically synthesizes a verification program that reads the event trace generated by a simulator and signals whether all invariants are respected. The second part consists of mining the temporal flow of events using a newly developed representation called State Flow Temporal Analysis Graph (SFTAG). While the first part seeks an assurance of implementation correctness by checking that the model invariants hold, the second part derives an extended model of the implementation and hence enables a deeper understanding of what was implemented. The main application studied in this work is the validation of the timing behavior of micro-architecture simulators. The study includes SFTAGs generated for a wide set of benchmark programs and their analysis using several artificial intelligence algorithms. This work improves the computer architecture research and verification processes as shown by the case studies and experiments that have been conducted.
Resumo:
This short paper presents a numerical method for spatial and temporal downscaling of solar global radiation and mean air temperature data from global weather forecast models and its validation. The final objective is to develop a prediction algorithm to be integrated in energy management models and forecast of energy harvesting in solar thermal systems of medium/low temperature. Initially, hourly prediction and measurement data of solar global radiation and mean air temperature were obtained, being then numerically downscaled to half-hourly prediction values for the location where measurements were taken. The differences between predictions and measurements were analyzed for more than one year of data of mean air temperature and solar global radiation on clear sky days, resulting in relative daily deviations of around -0.9±3.8% and 0.02±3.92%, respectively.
Resumo:
The topic of the Ph.D project focuses on the modelling of the soil-water dynamics inside an instrumented embankment section along Secchia River (Cavezzo (MO)) in the period from 2017 to 2018 and the quantification of the performance of the direct and indirect simulations . The commercial code Hydrus2D by Pc-Progress has been chosen to run the direct simulations. Different soil-hydraulic models have been adopted and compared. The parameters of the different hydraulic models are calibrated using a local optimization method based on the Levenberg - Marquardt algorithm implemented in the Hydrus package. The calibration program is carried out using different types of dataset of observation points, different weighting distributions, different combinations of optimized parameters and different initial sets of parameters. The final goal is an in-depth study of the potentialities and limits of the inverse analysis when applied to a complex geotechnical problem as the case study. The second part of the research focuses on the effects of plant roots and soil-vegetation-atmosphere interaction on the spatial and temporal distribution of pore water pressure in soil. The investigated soil belongs to the West Charlestown Bypass embankment, Newcastle, Australia, that showed in the past years shallow instabilities and the use of long stem planting is intended to stabilize the slope. The chosen plant species is the Malaleuca Styphelioides, native of eastern Australia. The research activity included the design and realization of a specific large scale apparatus for laboratory experiments. Local suction measurements at certain intervals of depth and radial distances from the root bulb are recorded within the vegetated soil mass under controlled boundary conditions. The experiments are then reproduced numerically using the commercial code Hydrus 2D. Laboratory data are used to calibrate the RWU parameters and the parameters of the hydraulic model.
Resumo:
The main topic of this thesis is confounding in linear regression models. It arises when a relationship between an observed process, the covariate, and an outcome process, the response, is influenced by an unmeasured process, the confounder, associated with both. Consequently, the estimators for the regression coefficients of the measured covariates might be severely biased, less efficient and characterized by misleading interpretations. Confounding is an issue when the primary target of the work is the estimation of the regression parameters. The central point of the dissertation is the evaluation of the sampling properties of parameter estimators. This work aims to extend the spatial confounding framework to general structured settings and to understand the behaviour of confounding as a function of the data generating process structure parameters in several scenarios focusing on the joint covariate-confounder structure. In line with the spatial statistics literature, our purpose is to quantify the sampling properties of the regression coefficient estimators and, in turn, to identify the most prominent quantities depending on the generative mechanism impacting confounding. Once the sampling properties of the estimator conditionally on the covariate process are derived as ratios of dependent quadratic forms in Gaussian random variables, we provide an analytic expression of the marginal sampling properties of the estimator using Carlson’s R function. Additionally, we propose a representative quantity for the magnitude of confounding as a proxy of the bias, its first-order Laplace approximation. To conclude, we work under several frameworks considering spatial and temporal data with specific assumptions regarding the covariance and cross-covariance functions used to generate the processes involved. This study allows us to claim that the variability of the confounder-covariate interaction and of the covariate plays the most relevant role in determining the principal marker of the magnitude of confounding.
Resumo:
Long-term monitoring of acoustical environments is gaining popularity thanks to the relevant amount of scientific and engineering insights that it provides. The increasing interest is due to the constant growth of storage capacity and computational power to process large amounts of data. In this perspective, machine learning (ML) provides a broad family of data-driven statistical techniques to deal with large databases. Nowadays, the conventional praxis of sound level meter measurements limits the global description of a sound scene to an energetic point of view. The equivalent continuous level Leq represents the main metric to define an acoustic environment, indeed. Finer analyses involve the use of statistical levels. However, acoustic percentiles are based on temporal assumptions, which are not always reliable. A statistical approach, based on the study of the occurrences of sound pressure levels, would bring a different perspective to the analysis of long-term monitoring. Depicting a sound scene through the most probable sound pressure level, rather than portions of energy, brought more specific information about the activity carried out during the measurements. The statistical mode of the occurrences can capture typical behaviors of specific kinds of sound sources. The present work aims to propose an ML-based method to identify, separate and measure coexisting sound sources in real-world scenarios. It is based on long-term monitoring and is addressed to acousticians focused on the analysis of environmental noise in manifold contexts. The presented method is based on clustering analysis. Two algorithms, Gaussian Mixture Model and K-means clustering, represent the main core of a process to investigate different active spaces monitored through sound level meters. The procedure has been applied in two different contexts: university lecture halls and offices. The proposed method shows robust and reliable results in describing the acoustic scenario and it could represent an important analytical tool for acousticians.
Resumo:
In this work, integro-differential reaction-diffusion models are presented for the description of the temporal and spatial evolution of the concentrations of Abeta and tau proteins involved in Alzheimer's disease. Initially, a local model is analysed: this is obtained by coupling with an interaction term two heterodimer models, modified by adding diffusion and Holling functional terms of the second type. We then move on to the presentation of three nonlocal models, which differ according to the type of the growth (exponential, logistic or Gompertzian) considered for healthy proteins. In these models integral terms are introduced to consider the interaction between proteins that are located at different spatial points possibly far apart. For each of the models introduced, the determination of equilibrium points with their stability and a study of the clearance inequalities are carried out. In addition, since the integrals introduced imply a spatial nonlocality in the models exhibited, some general features of nonlocal models are presented. Afterwards, with the aim of developing simulations, it is decided to transfer the nonlocal models to a brain graph called connectome. Therefore, after setting out the construction of such a graph, we move on to the description of Laplacian and convolution operations on a graph. Taking advantage of all these elements, we finally move on to the translation of the continuous models described above into discrete models on the connectome. To conclude, the results of some simulations concerning the discrete models just derived are presented.
Resumo:
Hippocampal sclerosis (HS) is considered the most frequent neuropathological finding in patients with mesial temporal lobe epilepsy (MTLE). Hippocampal specimens of pharmacoresistant MTLE patients that underwent epilepsy surgery for seizure control reveal the characteristic pattern of segmental neuronal cell loss and concomitant astrogliosis. However, classification issues of hippocampal lesion patterns have been a matter of intense debate. International consensus classification has only recently provided significant progress for comparisons of neurosurgical and clinic-pathological series between different centers. The respective four-tiered classification system of the International League Against Epilepsy subdivides HS into three types and includes a term of gliosis only, no-HS. Future studies will be necessary to investigate whether each of these subtypes of HS may be related to different etiological factors or with postoperative memory and seizure outcome. Molecular studies have provided potential deeper insights into the pathogenesis of HS and MTLE on the basis of epilepsy-surgical hippocampal specimens and corresponding animal models. These include channelopathies, activation of NMDA receptors, and other conditions related to Ca(2+) influx into neurons, the imbalance of Ca(2+)-binding proteins, acquired channelopathies that increase neuronal excitability, paraneoplastic and non-paraneoplastic inflammatory events, and epigenetic regulation promoting or facilitating hippocampal epileptogenesis. Genetic predisposition for HS is clearly suggested by the high incidence of family history in patients with HS, and by familial MTLE with HS. So far, it is clear that HS is multifactorial and there is no individual pathogenic factor either necessary or sufficient to generate this intriguing histopathological condition. The obvious variety of pathogenetic combinations underlying HS may explain the multitude of clinical presentations, different responses to clinical and surgical treatment. We believe that the stratification of neuropathological patterns can help to characterize specific clinic-pathological entities and predict the postsurgical seizure control in an improved fashion.
Resumo:
Prosopis rubriflora and Prosopis ruscifolia are important species in the Chaquenian regions of Brazil. Because of the restriction and frequency of their physiognomy, they are excellent models for conservation genetics studies. The use of microsatellite markers (Simple Sequence Repeats, SSRs) has become increasingly important in recent years and has proven to be a powerful tool for both ecological and molecular studies. In this study, we present the development and characterization of 10 new markers for P. rubriflora and 13 new markers for P. ruscifolia. The genotyping was performed using 40 P. rubriflora samples and 48 P. ruscifolia samples from the Chaquenian remnants in Brazil. The polymorphism information content (PIC) of the P. rubriflora markers ranged from 0.073 to 0.791, and no null alleles or deviation from Hardy-Weinberg equilibrium (HW) were detected. The PIC values for the P. ruscifolia markers ranged from 0.289 to 0.883, but a departure from HW and null alleles were detected for certain loci; however, this departure may have resulted from anthropic activities, such as the presence of livestock, which is very common in the remnant areas. In this study, we describe novel SSR polymorphic markers that may be helpful in future genetic studies of P. rubriflora and P. ruscifolia.
Resumo:
In acquired immunodeficiency syndrome (AIDS) studies it is quite common to observe viral load measurements collected irregularly over time. Moreover, these measurements can be subjected to some upper and/or lower detection limits depending on the quantification assays. A complication arises when these continuous repeated measures have a heavy-tailed behavior. For such data structures, we propose a robust structure for a censored linear model based on the multivariate Student's t-distribution. To compensate for the autocorrelation existing among irregularly observed measures, a damped exponential correlation structure is employed. An efficient expectation maximization type algorithm is developed for computing the maximum likelihood estimates, obtaining as a by-product the standard errors of the fixed effects and the log-likelihood function. The proposed algorithm uses closed-form expressions at the E-step that rely on formulas for the mean and variance of a truncated multivariate Student's t-distribution. The methodology is illustrated through an application to an Human Immunodeficiency Virus-AIDS (HIV-AIDS) study and several simulation studies.
Resumo:
Often in biomedical research, we deal with continuous (clustered) proportion responses ranging between zero and one quantifying the disease status of the cluster units. Interestingly, the study population might also consist of relatively disease-free as well as highly diseased subjects, contributing to proportion values in the interval [0, 1]. Regression on a variety of parametric densities with support lying in (0, 1), such as beta regression, can assess important covariate effects. However, they are deemed inappropriate due to the presence of zeros and/or ones. To evade this, we introduce a class of general proportion density, and further augment the probabilities of zero and one to this general proportion density, controlling for the clustering. Our approach is Bayesian and presents a computationally convenient framework amenable to available freeware. Bayesian case-deletion influence diagnostics based on q-divergence measures are automatic from the Markov chain Monte Carlo output. The methodology is illustrated using both simulation studies and application to a real dataset from a clinical periodontology study.
Resumo:
This study intended to compare the circadian rhythm and circadian profile between patients with juvenile myoclonic epilepsy (JME) and patients with temporal lobe epilepsy (TLE). We enrolled 16 patients with JME and 37 patients with TLE from the Outpatient Clinic of UNICAMP. We applied a questionnaire about sleep-wake cycle and circadian profile. Fourteen (87%) out of 16 patients with JME, and 22 out of 37 (59%) patients with TLE reported that they would sleep after seizure (p < 0.05). Three (19%) patients with JME, and 17 (46%) reported to be in better state before 10:00 AM (p < 0.05). There is no clear distinct profile and circadian pattern in patients with JME in comparison to TLE patients. However, our data suggest that most JME patients do not feel in better shape early in the day.
Resumo:
The aim of this research was to analyze temporal auditory processing and phonological awareness in school-age children with benign childhood epilepsy with centrotemporal spikes (BECTS). Patient group (GI) consisted of 13 children diagnosed with BECTS. Control group (GII) consisted of 17 healthy children. After neurological and peripheral audiological assessment, children underwent a behavioral auditory evaluation and phonological awareness assessment. The procedures applied were: Gaps-in-Noise test (GIN), Duration Pattern test, and Phonological Awareness test (PCF). Results were compared between the groups and a correlation analysis was performed between temporal tasks and phonological awareness performance. GII performed significantly better than the children with BECTS (GI) in both GIN and Duration Pattern test (P < 0.001). GI performed significantly worse in all of the 4 categories of phonological awareness assessed: syllabic (P = 0.001), phonemic (P = 0.006), rhyme (P = 0.015) and alliteration (P = 0.010). Statistical analysis showed a significant positive correlation between the phonological awareness assessment and Duration Pattern test (P < 0.001). From the analysis of the results, it was concluded that children with BECTS may have difficulties in temporal resolution, temporal ordering, and phonological awareness skills. A correlation was observed between auditory temporal processing and phonological awareness in the suited sample.
Resumo:
Objective Patients with mesial temporal lobe epilepsy (MTLE) may present unstable pattern of seizures. We aimed to evaluate the occurrence of relapse-remitting seizures in MTLE with (MTLE-HS) and without (MTLE-NL) hippocampal sclerosis. Method We evaluated 172 patients with MTLE-HS (122) or MTLE-NL (50). Relapse-remitting pattern was defined as periods longer than two years of seizure-freedom intercalated with seizure recurrence. Infrequent seizures was considered as up to three seizures per year and frequent seizures as any period of seizures higher than that. Results Thirty-seven (30%) MTLE-HS and 18 (36%) MTLE-NL patients had relapse-remitting pattern (X2, p = 0.470). This was more common in those with infrequent seizures (X2, p < 0.001). Twelve MTLE-HS and one MTLE-NL patients had prolonged seizure remission between the first and second decade of life (X2, p = 0.06). Conclusion Similar proportion of MTLE-HS or MTLE-NL patients present relapse-remitting seizures and this occurs more often in those with infrequent seizures.
Resumo:
Remote sensing data are each time more available and can be used to monitor the vegetal development of main agricultural crops, such as the Arabic coffee in Brazil, since that the relationship between spectral and agronomical data be well known. Therefore, this work had the main objective to assess the use of Quickbird satellite images to estimate biophysical parameters of coffee crop. Test area was composed by 25 coffee fields located between the cities of Ribeirão Corrente, Franca and Cristais Paulista (SP), Brazil, and the biophysical parameters used were row and between plants spacing, plant height, LAI, canopy diameter, percentage of vegetation cover, roughness and biomass. Spectral data were the reflectance of four bands of QUICKBIRD and values of four vegetations indexes (NDVI, GVI, SAVI and RVI) based on the same satellite. All these data were analyzed using linear and nonlinear regression methods to generate estimation models of biophysical parameters. The use of regression models based on nonlinear equations was more appropriate to estimate parameters such as the LAI and the percentage of biomass, important to indicate the productivity of coffee crop.