988 resultados para Teaching Procedures
Resumo:
In spite of having a long history in education, inquiry teaching (the teaching in ways that foster inquiry based learning in students) in science education is still a highly problematic issue. However, before teacher educators can hope to effectively influence teacher implementation of inquiry teaching in the science classroom, educators need to understand teachers’ current conceptions of inquiry teaching. This study describes the qualitatively different ways in which 20 primary school teachers experienced inquiry teaching in science education. A phenomenographic approach was adopted and data sourced from interviews of these teachers. The three categories of experiences that emerged from this study were; Student Centred Experiences (Category 1), Teacher Generated Problems (Category 2), and Student Generated Questions (Category 3). In Category 1 teachers structure their teaching around students sensory experiences, expecting that students will see, hear, feel and do interesting things that will focus their attention, have them asking science questions, and improve their engagement in learning. In Category 2 teachers structure their teaching around a given problem they have designed and that the students are required to solve. In Category 3 teachers structure their teaching around helping students to ask and answer their own questions about phenomena. These categories describe a hierarchy with the Student Generated Questions Category as the most inclusive. These categories were contrasted with contemporary educational theory, and it was found that when given the chance to voice their own conceptions without such comparison teachers speak of inquiry teaching in only one of the three categories mentioned. These results also help inform our theoretical understanding of teacher conceptions of inquiry teaching. Knowing what teachers actually experience as inquiry teaching, as opposed to understand theoretically, is a valuable contribution to the literature. This knowledge provides a valuable contribution to educational theory, which helps policy, curriculum development, and the practicing primary school teachers to more fully understand and implement the best educative practices in their daily work. Having teachers experience the qualitatively different ways of experiencing inquiry teaching uncovered in this study is expected to help teachers to move towards a more student-centred, authentic inquiry outcome for their students and themselves. Going beyond this to challenge teacher epistemological beliefs regarding the source of knowledge may also assist them in developing more informed notions of the nature of science and of scientific inquiry during professional development opportunities. The development of scientific literacy in students, a high priority for governments worldwide, will only to benefit from these initiatives.
Resumo:
The intention of the analysis in this paper was to determine, from interviews with eleven early years’ teachers, what knowledge guided their teaching of moral behaviour. Six of the teachers defined moral behaviour in terms of social conventions only. Children’s learning was attributed by five of the teachers to incidental/contextual issues. Nine of the teachers used discussion of issues, in various contexts, as a way of teaching about social and moral issues. The majority of the teachers (n=7) gave the source of their knowledge of pedagogy as practical as opposed to theoretically informed. There was no clear relationship between their definitions, understanding of children’s learning, pedagogy or source of knowledge. Most of the teachers were using discussion, negotiation and reflection to develop the children’s moral and social behaviour. This is probably effective; however, it suggests a strong need for teaching of moral development to be given more prominence and addressed directly in in-service courses so that teachers are clear about their intentions and the most effective ways of achieving them.
Resumo:
Schools have long been seen as institutions for preparing children for life, both academically and as moral agents in society. In order to become capable, moral citizens, children need to be provided with opportunities to learn moral values. However, little is known about how teachers enact social and moral values programs in the classroom. The aim of this paper is to investigate the practices that Australian early years teachers describe as important for teaching moral values. To investigate early years teachers’ understandings of moral pedagogy, 379 Australian teachers with experience teaching children in the early years were invited to participate in an on-line survey. This paper focuses on responses provided to an open-ended question relating to teaching practices for moral values. The responses were analysed using an interpretive methodology. The results indicate that the most prominent approaches to teaching moral values described by this group of Australian early years teachers were engaging children in moral activities. This was closely followed by teaching practices for transmitting moral values. Engaging children in building meaning and participatory learning for moral values were least often described.
Resumo:
Concerns raised in educational reports about school science in terms of students. outcomes and attitudes, as well as science teaching practices prompted investigation into science learning and teaching practices at the foundational level of school science. Without science content and process knowledge, understanding issues of modern society and active participation in decision-making is difficult. This study contended that a focus on the development of the language of science could enable learners to engage more effectively in learning science and enhance their interest and attitudes towards science. Furthermore, it argued that explicit teaching practices where science language is modelled and scaffolded would facilitate the learning of science by young children at the beginning of their formal schooling. This study aimed to investigate science language development at the foundational level of school science learning in the preparatory-school with students aged five and six years. It focussed on the language of science and science teaching practices in early childhood. In particular, the study focussed on the capacity for young students to engage with and understand science language. Previous research suggests that students have difficulty with the language of science most likely because of the complexities and ambiguities of science language. Furthermore, literature indicates that tensions transpire between traditional science teaching practices and accepted early childhood teaching practices. This contention prompted investigation into means and models of pedagogy for learning foundational science language, knowledge and processes in early childhood. This study was positioned within qualitative assumptions of research and reported via descriptive case study. It was located in a preparatory-school classroom with the class teacher, teacher-aide, and nineteen students aged four and five years who participated with the researcher in the study. Basil Bernstein.s pedagogical theory coupled with Halliday.s Systemic Functional Linguistics (SFL) framed an examination of science pedagogical practices for early childhood science learning. Students. science learning outcomes were gauged by focussing a Hallydayan lens on their oral and reflective language during 12 science-focussed episodes of teaching. Data were collected throughout the 12 episodes. Data included video and audio-taped science activities, student artefacts, journal and anecdotal records, semi-structured interviews and photographs. Data were analysed according to Bernstein.s visible and invisible pedagogies and performance and competence models. Additionally, Halliday.s SFL provided the resource to examine teacher and student language to determine teacher/student interpersonal relationships as well as specialised science and everyday language used in teacher and student science talk. Their analysis established the socio-linguistic characteristics that promoted science competencies in young children. An analysis of the data identified those teaching practices that facilitate young children.s acquisition of science meanings. Positive indications for modelling science language and science text types to young children have emerged. Teaching within the studied setting diverged from perceived notions of common early childhood practices and the benefits of dynamic shifting pedagogies were validated. Significantly, young students demonstrated use of particular specialised components of school-science language in terms of science language features and vocabulary. As well, their use of language demonstrated the students. knowledge of science concepts, processes and text types. The young students made sense of science phenomena through their incorporation of a variety of science language and text-types in explanations during both teacher-directed and independent situations. The study informs early childhood science practices as well as practices for foundational school science teaching and learning. It has exposed implications for science education policy, curriculum and practices. It supports other findings in relation to the capabilities of young students. The study contributes to Systemic Functional Linguistic theory through the development of a specific resource to determine the technicality of teacher language used in teaching young students. Furthermore, the study contributes to methodology practices relating to Bernsteinian theoretical perspectives and has demonstrated new ways of depicting and reporting teaching practices. It provides an analytical tool which couples Bernsteinian and Hallidayan theoretical perspectives. Ultimately, it defines directions for further research in terms of foundation science language learning, ongoing learning of the language of science and learning science, science teaching and learning practices, specifically in foundational school science, and relationships between home and school science language experiences.
Resumo:
This study investigated whether conceptual development is greater if students learning senior chemistry hear teacher explanations and other traditional teaching approaches first then see computer based visualizations or vice versa. Five Canadian chemistry classes, taught by three different teachers, studied the topics of Le Chatelier’s Principle and dynamic chemical equilibria using scientific visualizations with the explanation and visualizations in different orders. Conceptual development was measured using a 12 item test based on the Chemistry Concepts Inventory. Data was obtained about the students’ abilities, learning styles (auditory, visual or kinesthetic) and sex, and the relationships between these factors and conceptual development due to the teaching sequences were investigated. It was found that teaching sequence is not important in terms of students’ conceptual learning gains, across the whole cohort or for any of the three subgroups.
Resumo:
This paper reports on the outcomes of a peer partnership program trialled at the Queensland University of Technology (QUT), Australia. The program was designed based on a community of practice methodology to bring together academic staff for the purpose of advancing teaching practice. The program encouraged professional and supportive environments for the purpose of critical reflection and personal development. The belief was that quality teaching is core business and vital to university organisational goals. Peer partnership programs support improvement in teaching and learning. Participants in the program reported the program enhanced their commitment and insight into teaching and that there is willingness to be involved if supported by colleagues and an organisation. Feedback from participants in the program was positive and outcomes arising from the QUT Peer Partnership Project were the development of an online peer partner tool-kit, staff development training, an instructional DVD and integration of the project goals within QUT staff development programs.
Resumo:
17.1 Up until the 1990s the methods used to teach the law had evolved little since the first law schools were established in Australia. As Keyes and Johnstone observed: In the traditional model, most teachers uncritically replicate the learning experiences that they had when students, which usually means that the dominant mode of instruction is reading lecture notes to large classes in which students are largely passive. Traditional legal education has been described in the following terms: Traditionally law is taught through a series of lectures, with little or no student involvement, and a tutorial programme. Sometimes tutorials are referred to as seminars but the terminology used is often insignificant: both terms refer to probably the only form of student participation that takes place throughout these students‘ academic legal education. The tutorial consists of analysing the answers, prepared in advanced (sic), to artificial Janet and John Doe problems or esoteric essay questions. The primary focus of traditional legal education is the transmission of content knowledge, more particularly the teaching of legal rules, especially those drawn from case law. This approach has a long pedigree. Writing in 1883, Dicey proposed that nothing can be taught to students of greater value, either intellectually or for the purposes of legal practice, than the habit of looking on the law as a series of rules‘.
Resumo:
Project-based learning (PBL) is widely used in engineering courses. The closer to real-life the project, the greater the relevance and depth of learning experienced by students. Formula Society of Automotive Engineering (FSAE) is a fine example of a team-based project modelled on real-life problems whereby each student team designs and builds a small race car for competitive evaluation. Queensland University of Technology (QUT) has participated in FSAE-Australia since 2004. Based on the success of the project, QUT has gone the additional step of introducing a motor-racing specialization (second major) to complement its mechanical engineering degree. In this paper, the benefits of teaching motor-racing engineering through real-life projects are presented together with a discussion of the challenges faced and how they have been addressed. In order to validate the authors' observations on the teaching approaches used, student feedback was solicited through QUT's online learning experience survey (LEX), as well as a customized paper-based survey. The results of the surveys are analysed and discussed in this paper.
Resumo:
In this paper different aspects of teaching tribology and maintenance-related subjects with a hands-on focus at Queensland University of Technology (QUT) are presented and discussed. As part of the study, a combination of data from core units, such as engineering design units, and elective units, was used, in addition to laboratory experiments, real-life projects, interactive software packages and industry visits. The mechanical engineering curriculum structure used at QUT, consisting of the main specialization (first major) and the second specialization (second major), is also discussed with specific emphasis on the teaching of tribology and maintenance-related subjects. To evaluate students' satisfaction with the novel teaching approaches used, tailored questionnaires were used as well as QUT's online learning experience survey (LEX). Statistical results of these sureveys are presented and discussed. In summary, these showed that students overwhelmingly support the hands-on and practical focus in teaching tribology and maintenance-related subjects and that the teaching approaches used shorten the learning curve and make students better prepared for integration in the workplace.
Resumo:
Collaboration between academic and library faculty is an important topic of discussion and research among academic librarians. Partnerships are vital for developing effective information literacy education. The research reported in this paper aims to develop an understanding of academic collaborators by analyzing academic faculty’s teaching social network. Academic faculty teaching social networks have not been previously described through the lens of social network analysis. A teaching social network is comprised of people and their communication channels that affect academic faculty when they design and deliver their courses. Social network analysis was the methodology used to describe the teaching social networks. The preliminary results show academic faculty were more affected by the channels of communication in how they taught (pedagogy) than what they taught (course content). This study supplements the existing research on collaboration and information literacy. It provides both academic and library faculty with added insight into their relationships.
Resumo:
The World Health Organization recommends that data on mortality in its member countries are collected utilising the Medical Certificate of Cause of Death published in the instruction volume of the ICD-10. However, investment in health information processes necessary to promote the use of this certificate and improve mortality information is lacking in many countries. An appeal for support to make improvements has been launched through the Health Metrics Network’s MOVE-IT strategy (Monitoring of Vital Events – Information Technology) [World Health Organization, 2011]. Despite this international spotlight on the need for capture of mortality data and in the use of the ICD-10 to code the data reported on such certificates, there is little cohesion in the way that certifiers of deaths receive instruction in how to complete the death certificate, which is the main source document for mortality statistics. Complete and accurate documentation of the immediate, underlying and contributory causes of death of the decedent on the death certificate is a requirement to produce standardised statistical information and to the ability to produce cause-specific mortality statistics that can be compared between populations and across time. This paper reports on a research project conducted to determine the efficacy and accessibility of the certification module of the WHO’s newly-developed web based training tool for coders and certifiers of deaths. Involving a population of medical students from the Fiji School of Medicine and a pre and post research design, the study entailed completion of death certificates based on vignettes before and after access to the training tool. The ability of the participants to complete the death certificates and analysis of the completeness and specificity of the ICD-10 coding of the reported causes of death were used to measure the effect of the students’ learning from the training tool. The quality of death certificate completion was assessed using a Quality Index before and after the participants accessed the training tool. In addition, the views of the participants about accessibility and use of the training tool were elicited using a supplementary questionnaire. The results of the study demonstrated improvement in the ability of the participants to complete death certificates completely and accurately according to best practice. The training tool was viewed very positively and its implementation in the curriculum for medical students was encouraged. Participants also recommended that interactive discussions to examine the certification exercises would be an advantage.
Resumo:
Background: Room ventilation is a key determinant of airborne disease transmission. Despite this, ventilation guidelines in hospitals are not founded on robust scientific evidence related to prevention of airborne transmission. Methods: We sought to assess the effect of ventilation rates on influenza, tuberculosis (TB) and rhinovirus infection risk within three distinct rooms in a major urban hospital; a Lung Function Laboratory, Emergency Department (ED) Negative-pressure Isolation Room and an Outpatient Consultation Room were investigated. Air exchange rate measurements were performed in each room using CO2 as a tracer. Gammaitoni and Nucci’s model was employed to estimate infection risk. Results: Current outdoor air exchange rates in the Lung Function Laboratory and ED Isolation Room limited infection risks to between 0.1 and 3.6%. Influenza risk for individuals entering an Outpatient Consultation Room after an infectious individual departed ranged from 3.6 to 20.7%, depending on the duration for which each person occupied the room. Conclusions: Given the absence of definitive ventilation guidelines for hospitals, air exchange measurements combined with modelling afford a useful means of assessing, on a case-by-case basis, the suitability of room ventilation at preventing airborne disease transmission.
Resumo:
Since 1996, quality teaching has been recognised in the Australian Awards for University Teaching (AAUT), administered first by the Australian government Department of Education, and then from 2000, by the Australian Universities Teaching Committee (AUTC). In 2005, the awards were overseen by the government funded Carrick Institute for Learning and Teaching in Higher Education and known as the Carrick Awards for Australian University Teaching. The newly elected Rudd government reconfigured the process and established the Australian Learning and Teaching Council (ALTC) in 2008 to administer the awards under the AAUT nomenclature. In this edition of Re-Union, Deborah Henderson reflects on receiving an a 2010 ALTC Teaching Excellence Award in the category of Social Sciences (including Education).