956 resultados para Sucrose hydrolysis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The major globulin fraction from lentil seeds was investigated with respect td in vitro hydrolysis by trypsin and chymotrypsin. Globulin was isolated by a NaCl-ascorbate extraction procedure and purified by DEAE-cellulose chromatography and gelfiltration chromatography on Sepharose CL-6B. The purity and identification of the protein were performed by PAGE. The native globulin, with a molecular weight of 375 kD, was resolved by SDS-PAGE into twelve polypeptides with molecular weights ranging from 61 to 14.5 kD. Native and heated globulin GI was hydrolyzed with trypsin and chymotrypsin. SDS-PAGE indicated that native globulin was more resistant to digestion than heated protein. Amino acid analysis of the major globulin revealed that glutamic acid was present in the largest concentration, followed by aspartic acid, arginine and leucine. As is also the case for other legumin-like globulins, lentil GI was deficient in sulfur-containing amino acids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The acid and ultrasound catalyzed hydrolysis of solventless TEOS-water mixtures are studied, as a function of the initial additions of ethanol to the mixtures, by means of flux calorimetry measurements. A device was specially designed for this purpose. Under acid conditions, our proposed method has been able to resolve hydrolysis from other condensation reactions, by detecting the exothermal hydrolysis reaction heat. The process has been explained by a dissolution and reaction mechanism. Ultrasound forces the dissolution process to start the reaction. The alcohol produced in the reaction helps the dissolution process to further enhance the hydrolysis. Initial amounts of pure ethanol added to the mixtures shorten the start time of the reaction, due to an additional effect of dissolution, and diminish the reaction rate, as a result of the solvent dilution effect. Our dissolution and reaction mechanism modeling describes the main points arising from the experimental data and yields k(H) = 0.24 M(-1) min(-1) for the second-order hydrolysis rate constant at 39 degrees C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pure and mixed tetramethoxysilane (TMOS) and tetraethoxysilane (TEOS) were hydrolyzed at 35 degrees C, using oxalic acid as a catalyst and ultrasound stimulation. The hydrolysis reaction was carried out in a specially designed device, in which a heat flow steady state, between the ultrasound source and an external thermostatic bath, was maintained, in the absence of reactions. The exothermic hydrolysis causes a time dependent thermal peak. An induction time is apparent in pure TEOS before the hydrolysis peaks starts, which has been explained by the initial immiscibility gap of the TEOS-water system. The induction time was found to be approximately of the same magnitude as in the HCl catalyzed hydrolysis, in spite of the uncertainty accompanying the peak definition. No induction period is apparent in pure TMOS, so that the hydrolysis starts with its maximum rate. Two independent thermal peaks in the mixed TMOS-TEOS samples were found, both associated to the respective hydrolyses of the pure component. The induction time for the TEOS hydrolysis is decreased as more alcohol (and silanol) is produced in the earlier TMOS hydrolysis. This effect is explained by improvement of homogenization by alcohol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The acid hydrolysis under ultrasound stimulation of solventless tetraethoxysilane(TEOS)-water mixtures was studied at 40 degrees C, by means of a heat flux calorimetric method, as a function of the initial water/TEOS molar ratio (r) ranging from 2 to 10. The method is based on the time record of the exothermic heat peak of hydrolysis, arising after an induction time under ultrasound stimulation, which is a measure of the reaction rate. The hydrolysed quantity was found to be approximately independent of the water/TEOS molar ratio, even for r < 4. Polycondensation reaction takes place mainly for low water/TEOS molar ratio in order to supply water to allow almost complete hydrolysis. The overall process of dissolution and hydrolysis has reasonably been described by a previous modelling. The dissolution process of water in TEOS, under ultrasound stimulation and acid conditions, was found to be rather dependent of the alcohol produced in the hydrolysis reaction instead of the initial water quantity present in the mixture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spatial distribution of water and sugars in half-fresh apples dehydrated in sucrose solutions (30% and 50% w/w, 27 degrees C) for 2, 4 and 8 h, was determined. Each half was sliced as from the exposed surface. The density, water and sugar contents were determined for each piece. A mathematical model was fitted to the experimental data of the water and sucrose contents considering the overall flux and tissue shrinkage. A numerical method of finite differences permitted the calculation of the effective diffusion coefficients as a function of concentration, using material coordinates and integrating the two differential equations (for water and sucrose) simultaneously. The coefficients obtained were one or even two orders of magnitude lower than those for pure solutions and presented unusual concentration dependence. The behaviour of the apple tissue was also studied using light microscopy techniques to obtain images of the osmotically treated pieces (20%, 30% and 50% w/w sucrose solutions for 2, 4 and 8 h). (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simplified dissolution and reaction modeling was employed to study the hydrolysis of heterogeneous tetraethoxysilane (TEOS)-water-HCl mixtures under ultrasound stimulation. The nominal pH was changed from 0.8 to 2.0. The acid specific hydrolysis rate constant was determined as k = 6.1 mol(-1) 1 min(-1) [H+](-1) at 39 degreesC, in good agreement with the literature. Along the heterogeneous step of the reaction, the ultrasound maintains an additional quantity of water under a virtual state of dissolution besides the water dissolved due to the homogenizing effect of the alcohol produced in the reaction. The forced virtually dissolved water is probably represented by water at the TEOS-water interface during the heterogeneous step of the reaction. The mean radius of the heterogeneity represented by water dispersed in TEOS phase, while hydrolysis has not started yet, was evaluated as about 290 A. The HCl concentration accordingly increases the hydrolysis rate constant but its fundamental role on the immiscibility gap of the TEOS-water-ethanol system has not been unequivocally established. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small angle X-ray scattering measurements, bulk and skeleton density data and an in-situ study by dilatometric thermal analysis about the nanoporosity elimination above 800 degreesC in TEOS sonogels are presented. Apparently, two processes act during the nanoporosity elimination, which precedes the foaming phenomenon often observed in such systems. The first, with an activation energy of (3.9 +/- 0.4) x 10(2) kJ/mol and high frequency factor, is the controlling process of the most nanoporosity elimination at higher temperature. The value of this activation energy is compatible to that for viscous flux throughout densification process in typical silica-based materials. The second, with an activation energy of (49 +/- 5) kJ/mol and low frequency factor, seems to be the controlling process of the first and extremely slow nanoporosity elimination at low temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics of ultrasound-stimulated and HCl-catalyzed hydrolysis of solventless TEOS-water mixtures was studied as a function of temperature ranging from 10 degrees C up to 65 degrees C by means of flux calorimetry measurements. A specially designed device was utilized for this purpose. The exothermic peak arising few minutes after sonication began has been attributed mainly to the hydrolysis reaction. The overall hydrolysis process, which was measured through the irradiation time up to the hydrolysis peak, was found to be thermally activated, with an apparent activation energy Delta E = 36.4 kJ/mol. The alcohol produced at the early hydrolysis due to sonication seems to further enhance the reaction, via a parallel autocatalytic path, which is controlled by a faster pseudo second order rate constant (k'). Our modeling yielded k' = 6.3 x 10(-2) M(-1) min(-1) at 20 degrees C, which is in a reasonable agreement with the literature, and an activation energy Delta E = 40.4 kJ/mol for the specific process of hydrolysis in presence of alcohol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The water and sucrose effective diffusion coefficients behavior were studied in potato tubers immersed in aqueous sucrose solution, 50% (w/,A), at 27 degreesC. Water and sucrose concentration profiles were measured as function of the position for 3, 6 and 12 h of immersion. These were adjusted to a mathematical model for three components that take into account the bulk flow in a shrinking tissue and the concentration dependence of the diffusion coefficients.The binary effective coefficients were an order of magnitude lower than those for pure solutions of sucrose. These coefficients show an unusual concentration dependence. Analysis of these coefficients as functions of the concentration and position demonstrates that, cellular tissue promotes high resistance to diffusion in the tuber and also the elastic contraction of material influences the species diffusion. (C) 2003 Elsevier B.V. Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The simultaneous formation of nanometer sized zinc oxide (ZnO), and acetate zinc hydroxide double salt (Zn-HDS) is described. These phases, obtained using the sol-gel synthesis route based on zinc acetate salt in alcoholic media, were identified by direct characterization of the reaction products in solution using complementary techniques: nephelometry, in situ Small-Angle X-ray Scattering (SAXS), UV-Vis spectroscopy and Extended X-ray Absorption Fine Structures (EXAFS). In particular, the hydrolytic pathway of ethanolic zinc acetate precursor solutions promoted by addition of water with the molar ratio N = [H2O]/[Zn2+] = 0.05 was investigated in this paper. The aim was to understand the formation mechanism of ZnO colloidal suspension and to reveal the factors responsible for the formation of Zn-HDS in the final precipitates. The growth mechanism of ZnO nanoparticles is based on primary particle (radius approximate to 1.5 nm) rotation inside the primary aggregate (radius < 3.5 nm) giving rise to an epitaxial attachment of particles and then subsequent coalescence. The growth of second ZnO aggregates is not associated with the Otswald ripening, and could be associated with changes in equilibrium between solute species induced by the superficial etching of Zn-HDS particles at the advanced stage of kinetic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrolysis of TMOS in oxalic acid catalyzed reacting TMOS-water mixtures, under ultrasound stimulation, was studied by fitting a simplified dissolution and reaction modeling for samples, the hydrolysis rate of which had been measured in a previous work. The reaction pathway represented in a ternary diagram shows a heterogeneous step for the reaction which gradually progresses until complete homogenization of the system. Besides the water dissolved due to the homogenizing effect of the alcohol, ultrasound maintains a virtual and additional dissolution of water located at the interface between the TMOS and water during the heterogeneous step of the reaction. The mean radius of the heterogeneity represented by water dispersed in TMOS was evaluated as around 150 Angstrom. The oxalic acid concentration accordingly increases the hydrolysis rate constant but its fundamental role on the solubility of water in TMOS could not unequivocally be established.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two reactive dyes, C.I. Reactive Red 120 (RR120) and C.I. Reactive Green 19 (RG19), each bearing two azo groups as the chromophoric moiety and two monochloro-s-triazine groups as reactive groups, can be detected at nanomolar levels using cathodic stripping voltammetry. Linear calibration graphs were obtained for both reactive dyes, from 0.015 to 0.14 mu mol l(-1) for RR120 in pH 4 buffer and from 0.012 to 0.26 mu mol l(-1) for RG19 in pH 3 buffer, using a preconcentration at 0 V during 180 and 240 s on the mercury electrode, respectively. (C) 2001 Elsevier B.V. Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on dynamic rheological measurements, sucrose, glycerol and magnesium chloride (MgCl2) prevented egg yolk gelation at concentrations of 2% and higher, These additives showed improved cryoprotectant effects as their concentrations were increased, Sodium chloride (NaCl) at higher than 2% also prevented gelation but at 10%, it caused a considerable increase in viscosity of unfrozen yolk, Calcium chloride (CaCl2) showed an opposite effect, promoting protein coagulation before freezing, Samples with 2% CaCl2 gelled completely after 36h at -24 degrees C, Before freezing, potassium chloride (KCl) in the range 2-10% had an effect similar to that of NaCl, However, after freezing its effect changed, Yolk with 2% KCl, frozen 36h at -24 degrees C, showed very elastic behavior.