832 resultados para Strength And Endurance Training
Resumo:
This study investigates the compressive properties of concrete incorporating Mature Fine Tailings (MFTs) waste stream from a tar sands mining operation. The objectives of this study are to investigate material properties of the MFT material itself, as well as establish general feasibility of the utilization of MFT material in concrete mixtures through empirical data and visual observations. Investigations undertaken in this study consist of moisture content, materials finer than No. 200 sieve, Atterburg Limits as well as visual observations performed on MFT material as obtained. Control concrete mixtures as well as MFT replacement mixture designs (% by wt. of water) were guided by properties of the MFT material that were experimentally established. The experimental design consists of compression testing of 4”-diameter concrete cylinders of a control mixture, 30% MFT, 50% MFT and 70% MFT replacement mixtures with air-entrainer additive, as well as a control mixture and 30% MFT replacement mixture with no air-entrainer. A total of 6 mixtures (2 control mixtures, 4 replacement mixtures) moist-cured in lime water after 24 hours initial curing were tested for ultimate compressive strength at 7 days and 28 days in accordance to ASTM C39. The test results of fresh concrete material show that the addition of air-entrainer to the control mixture increases slump from 4” to 5.5”. However, the use of MFT material in concrete mixtures significantly decreases slump as compared to controls. All MFT replacement mixtures (30%, 50%, and 70%) with air-entrainer present slumps of 1”. 30% MFT with no air-entrainer presents a slump of 1.5”. It was found that 7-day ultimate compressive stress was not a good predictor of 28-day ultimate compressive stress. 28-day results indicate that the use of MFT material in concrete with air-entrainer decreases ultimate compressive stress for 30%, 50% and 70% MFT replacement amounts by 14.2%, 17.3% and 25.1% respectively.
Resumo:
In view of the risks involved in relying on a professional career in football as a way of making a future living, most players on Swiss National Youth Football Teams pursue some form of vocational training at the same time. This paper investigates the question under what conditions a successful football career is possible when faced with such a dual burden. In order to examine the development process as holistically as possible, a person-oriented approach was chosen. 159 former Swiss National Youth Team players were retrospectively interviewed about their careers, and the data were analysed using the LICUR method (Bergman, Magnusson, & El-Khouri, 2003). This involves identifying certain patterns in the relevant variables of sports career, vocational career and family support, and then comparing these with the performance at the age of peak performance. Through this, it was possible to identify promising patterns of development. It turns out that the critical transition, at the age of about 15–16 years, is characterised overall by stability. The most successful patterns display above-average family support accompanied by above-average professional talent promotion in the clubs. In this constellation, the football players who are later successful pursue vocational training courses leading to low levels of educational qualification.
Resumo:
INTRODUCTION We aimed to manipulate physiological determinants of severe exercise performance. We hypothesized that (1) beta-alanine supplementation would increase intramuscular carnosine and buffering capacity and dampen acidosis during severe cycling, (2) that high-intensity interval training (HIT) would enhance aerobic energy contribution during severe cycling, and (3) that HIT preceded by beta-alanine supplementation would have greater benefits. METHODS Sixteen active men performed incremental cycling tests and 90-s severe (110 % peak power) cycling tests at three time points: before and after oral supplementation with either beta-alanine or placebo, and after an 11-days HIT block (9 sessions, 4 × 4 min), which followed supplementation. Carnosine was assessed via MR spectroscopy. Energy contribution during 90-s severe cycling was estimated from the O2 deficit. Biopsies from m. vastus lateralis were taken before and after the test. RESULTS Beta-alanine increased leg muscle carnosine (32 ± 13 %, d = 3.1). Buffering capacity and incremental cycling were unaffected, but during 90-s severe cycling, beta-alanine increased aerobic energy contribution (1.4 ± 1.3 %, d = 0.5), concurrent with reduced O2 deficit (-5.0 ± 5.0 %, d = 0.6) and muscle lactate accumulation (-23 ± 30 %, d = 0.9), while having no effect on pH. Beta-alanine also enhanced motivation and perceived state during the HIT block. There were no between-group differences in adaptations to the training block, namely increased buffering capacity (+7.9 ± 11.9 %, p = 0.04, d = 0.6, n = 14) and glycogen storage (+30 ± 47 %, p = 0.04, d = 0.5, n = 16). CONCLUSIONS Beta-alanine did not affect buffering considerably, but has beneficial effects on severe exercise metabolism as well as psychological parameters during intense training phases.
Resumo:
Ageing societies suffer from an increasing incidence of bone fractures. Bone strength depends on the amount of mineral measured by clinical densitometry, but also on the micromechanical properties of the hierarchical organization of bone. Here, we investigate the mechanical response under monotonic and cyclic compression of both single osteonal lamellae and macroscopic samples containing numerous osteons. Micropillar compression tests in a scanning electron microscope, microindentation and macroscopic compression tests were performed on dry ovine bone to identify the elastic modulus, yield stress, plastic deformation, damage accumulation and failure mechanisms. We found that isolated lamellae exhibit a plastic behaviour, with higher yield stress and ductility but no damage. In agreement with a proposed rheological model, these experiments illustrate a transition from a ductile mechanical behaviour of bone at the microscale to a quasi-brittle response driven by the growth of cracks along interfaces or in the vicinity of pores at the macroscale.
Resumo:
Teamwork and the interprofessional collaboration of all health professions are a guarantee of patient safety and highly qualified treatment in patient care. In the daily clinical routine, physicians and nurses must work together, but the education of the different health professions occurs separately in various places, mostly without interrelated contact. Such training abets mutual misunderstanding and cements professional protectionism, which is why interprofessional education can play an important role in dismantling such barriers to future cooperation. In this article, a pilot project in interprofessional education involving both medical and nursing students is presented, and the concept and the course of training are described in detail. The report illustrates how nursing topics and anatomy lectures can be combined for interprofessional learning in an early phase of training. Evaluation of the course showed that the students were highly satisfied with the collaborative training and believed interprofessional education (IPE) to be an important experience for their future profession and understanding of other health professionals. The results show that the IPE teaching concept, which combines anatomy and nursing topics, provides an optimal setting for learning together and helps nurses and doctors in training to gain knowledge about other health professionals’ roles, thus evolving mutual understanding.
Resumo:
We tested the hypothesis that the interaction of self-control strength and state anxiety predicts perceptual–motor performance in a hand–eye coordination task. We predicted a stronger negative relation between anxiety and performance in a perceptual–motor task for participants whose self-control strength had been temporarily depleted compared to participants whose self-control strength was intact. In an experiment (N = 60), we manipulated self-control strength, measured state anxiety after an evaluative instruction, and assessed performance in the board game Operation as an indicator of perceptual–motor performance. The data supported our hypothesis: Only for participants whose self-control strength was temporarily depleted was there a statistically significant negative relation between anxiety and performance. Boosting self-control strength may help to prevent the potentially negative anxiety effects.
Resumo:
PURPOSE To determine the variability of apparent diffusion coefficient (ADC) values in various anatomic regions in the upper abdomen measured with magnetic resonance (MR) systems from different vendors and with different field strengths. MATERIALS AND METHODS Ten healthy men (mean age, 36.6 years ± 7.7 [standard deviation]) gave written informed consent to participate in this prospective ethics committee-approved study. Diffusion-weighted (DW) MR imaging was performed in each subject with 1.5- and 3.0-T MR systems from each of three vendors at two institutions. Two readers independently measured ADC values in seven upper abdominal regions (left and right liver lobe, gallbladder, pancreas, spleen, and renal cortex and medulla). ADC values were tested for interobserver differences, as well as for differences related to field strength and vendor, with repeated-measures analysis of variance; coefficients of variation (CVs) and variance components were calculated. RESULTS Interreader agreement was excellent (intraclass coefficient, 0.876). ADC values were (77.5-88.8) ×10(-5) mm(2)/sec in the spleen and (250.6-278.5) ×10(-5) mm(2)/sec in the gallbladder. There were no significant differences between ADC values measured at 1.5 T and those measured at 3.0 T in any anatomic region (P >.10 for all). In two of seven regions at 1.5 T (left and right liver lobes, P < .023) and in four of seven regions at 3.0 T (left liver lobe, pancreas, and renal cortex and medulla, P < .008), intervendor differences were significant. CVs ranged from 7.0% to 27.1% depending on the anatomic location. CONCLUSION Despite significant intervendor differences in ADC values of various anatomic regions of the upper abdomen, ADC values of the gallbladder, pancreas, spleen, and kidney may be comparable between MR systems from different vendors and between different field strengths.
Resumo:
AIM The aim was to elucidate whether essential hypertension is associated with altered capillary morphology and density and to what extent exercise training can normalize these parameters. METHODS To investigate angiogenesis and capillary morphology in essential hypertension, muscle biopsies were obtained from m. vastus lateralis in subjects with essential hypertension (n = 10) and normotensive controls (n = 11) before and after 8 weeks of aerobic exercise training. Morphometry was performed after transmission electron microscopy, and protein levels of several angioregulatory factors were determined. RESULTS At baseline, capillary density and capillary-to-fibre ratio were not different between the two groups. However, the hypertensive subjects had 9% lower capillary area (12.7 ± 0.4 vs. 13.9 ± 0.2 μm(2)) and tended to have thicker capillary basement membranes (399 ± 16 vs. 358 ± 13 nm; P = 0.094) than controls. Protein expression of vascular endothelial growth factor (VEGF), VEGF receptor-2 and thrombospondin-1 were similar in normotensive and hypertensive subjects, but tissue inhibitor of matrix metalloproteinase was 69% lower in the hypertensive group. After training, angiogenesis was evident by 15% increased capillary-to-fibre ratio in the hypertensive subjects only. Capillary area and capillary lumen area were increased by 7 and 15% in the hypertensive patients, whereas capillary basement membrane thickness was decreased by 17% (P < 0.05). VEGF expression after training was increased in both groups, whereas VEGF receptor-2 was decreased by 25% in the hypertensive patients(P < 0.05). CONCLUSION Essential hypertension is associated with decreased lumen area and a tendency for increased basement membrane thickening in capillaries of skeletal muscle. Exercise training may improve the diffusion conditions in essential hypertension by altering capillary structure and capillary number.
Resumo:
AIM Virtual patients (VPs) are a one-of-a-kind e-learning resource, fostering clinical reasoning skills through clinical case examples. The combination with face-to-face teaching is important for their successful integration, which is referred to as "blended learning". So far little is known about the use of VPs in the field of continuing medical education and residency training. The pilot study presented here inquired the application of VPs in the framework of a pediatric residency revision course. METHODS Around 200 participants of a pediatric nephology lecture ('nephrotic and nephritic syndrome in children') were offered two VPs as a wrap-up session at the revision course of the German Society for Pediatrics and Adolescent Medicine (DGKJ) 2009 in Heidelberg, Germany. Using a web-based survey form, different aspects were evaluated concerning the learning experiences with VPs, the combination with the lecture, and the use of VPs for residency training in general. RESULTS N=40 evaluable survey forms were returned (approximately 21%). The return rate was impaired by a technical problem with the local Wi-Fi firewall. The participants perceived the work-up of the VPs as a worthwhile learning experience, with proper preparation for diagnosing and treating real patients with similar complaints. Case presentations, interactivity, and locally and timely independent repetitive practices were, in particular, pointed out. On being asked about the use of VPs in general for residency training, there was a distinct demand for more such offers. CONCLUSION VPs may reasonably complement existing learning activities in residency training.
Resumo:
PURPOSE The objective of this study was to evaluate stiffness, strength, and failure modes of monolithic crowns produced using computer-aided design/computer-assisted manufacture, which are connected to diverse titanium and zirconia abutments on an implant system with tapered, internal connections. MATERIALS AND METHODS Twenty monolithic lithium disilicate (LS2) crowns were constructed and loaded on bone level-type implants in a universal testing machine under quasistatic conditions according to DIN ISO 14801. Comparative analysis included a 2 × 2 format: prefabricated titanium abutments using proprietary bonding bases (group A) vs nonproprietary bonding bases (group B), and customized zirconia abutments using proprietary Straumann CARES (group C) vs nonproprietary Astra Atlantis (group D) material. Stiffness and strength were assessed and calculated statistically with the Wilcoxon rank sum test. Cross-sections of each tested group were inspected microscopically. RESULTS Loaded LS2 crowns, implants, and abutment screws in all tested specimens (groups A, B, C, and D) did not show any visible fractures. For an analysis of titanium abutments (groups A and B), stiffness and strength showed equally high stability. In contrast, proprietary and nonproprietary customized zirconia abutments exhibited statistically significant differences with a mean strength of 366 N (Astra) and 541 N (CARES) (P < .05); as well as a mean stiffness of 884 N/mm (Astra) and 1,751 N/mm (CARES) (P < .05), respectively. Microscopic cross-sections revealed cracks in all zirconia abutments (groups C and D) below the implant shoulder. CONCLUSION Depending on the abutment design, prefabricated titanium abutment and proprietary customized zirconia implant-abutment connections in conjunction with monolithic LS2 crowns had the best results in this laboratory investigation.
Resumo:
BACKGROUND Recent technical development allows the digital manufacturing of monolithic reconstructions with high-performance materials. For implant-supported crowns, the fixation requires an abutment design onto which the reconstruction can be bonded. PURPOSE The aim of this laboratory investigation was to analyze stiffness, strength, and failure modes of implant-supported, computer-assisted design and computer-aided manufacturing (CAD/CAM)-generated resin nano ceramic (RNC) crowns bonded to three different titanium abutments. MATERIALS AND METHODS Eighteen monolithic RNC crowns were produced and loaded in a universal testing machine under quasi-static condition according to DIN ISO 14801. With regard to the type of titanium abutment, three groups were defined: (1) prefabricated cementable standard; (2) CAD/CAM-constructed individualized; and (3) novel prefabricated bonding base. Stiffness and strength were measured and analyzed statistically with Wilcoxon rank sum test. Sections of the specimens were examined microscopically. RESULTS Stiffness demonstrated high stability for all specimens loaded in the physiological loading range with means and standard deviations of 1,579 ± 120 N/mm (group A), 1,733 ± 89 N/mm (group B), and 1,704 ± 162 N/mm (group C). Mean strength of the novel prefabricated bonding base (group C) was 17% lower than of the two other groups. Plastic deformations were detectable for all implant-abutment crown connections. CONCLUSIONS Monolithic implant crowns made of RNC seem to represent a feasible and stable prosthetic construction under laboratory testing conditions with strength higher than the average occlusal force, independent of the different abutment designs used in this investigation.