971 resultados para Stochastic modelling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid face recognition, using image (2D) and structural (3D) information, has explored the fusion of Nearest Neighbour classifiers. This paper examines the effectiveness of feature modelling for each individual modality, 2D and 3D. Furthermore, it is demonstrated that the fusion of feature modelling techniques for the 2D and 3D modalities yields performance improvements over the individual classifiers. By fusing the feature modelling classifiers for each modality with equal weights the average Equal Error Rate improves from 12.60% for the 2D classifier and 12.10% for the 3D classifier to 7.38% for the Hybrid 2D+3D clasiffier.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aijt-Sahalia (2002) introduced a method to estimate transitional probability densities of di®usion processes by means of Hermite expansions with coe±cients determined by means of Taylor series. This note describes a numerical procedure to ¯nd these coe±cients based on the calculation of moments. One advantage of this procedure is that it can be used e®ectively when the mathematical operations required to ¯nd closed-form expressions for these coe±cients are otherwise infeasible.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A range of influences, both technical and organizational, has encouraged the widespread adoption of Enterprise Systems (ES). The integrated and process-oriented nature of Enterprise Systems has led organizations to use process modelling as a means of managing the complexity of these systems, and to aid in achieving business goals. Past research illustrates how process modelling is applied across different Enterprise Systems lifecycle phases. However, no empirical evidence exists to evaluate what factors are essential for a successful process modelling initiative, in general or in an ES context. This research-in-progress paper reports on an empirical investigation of the factors that influence process modelling success. It presents an a-priori process modelling critical-success-factors-model, describes its derivation, and concludes with an outlook to the next stages of the research.