969 resultados para Stochastic Model
Resumo:
The objective of this work was to compare the relative efficiency of initial selection and genetic parameter estimation, using augmented blocks design (ABD), augmented blocks twice replicated design (DABD) and group of randomised block design experiments with common treatments (ERBCT), by simulations, considering fixed effect model and mixed model with regular treatment effects as random. For the simulations, eight different conditions (scenarios) were considered. From the 600 simulations in each scenario, the mean percentage selection coincidence, the Pearsons´s correlation estimates between adjusted means for the fixed effects model, and the heritability estimates for the mixed model were evaluated. DABD and ERBCT were very similar in their comparisons and slightly superior to ABD. Considering the initial stages of selection in a plant breeding program, ABD is a good alternative for selecting superior genotypes, although none of the designs had been effective to estimate heritability in all the different scenarios evaluated.
Resumo:
When individuals learn by trial-and-error, they perform randomly chosen actions and then reinforce those actions that led to a high payoff. However, individuals do not always have to physically perform an action in order to evaluate its consequences. Rather, they may be able to mentally simulate actions and their consequences without actually performing them. Such fictitious learners can select actions with high payoffs without making long chains of trial-and-error learning. Here, we analyze the evolution of an n-dimensional cultural trait (or artifact) by learning, in a payoff landscape with a single optimum. We derive the stochastic learning dynamics of the distance to the optimum in trait space when choice between alternative artifacts follows the standard logit choice rule. We show that for both trial-and-error and fictitious learners, the learning dynamics stabilize at an approximate distance of root n/(2 lambda(e)) away from the optimum, where lambda(e) is an effective learning performance parameter depending on the learning rule under scrutiny. Individual learners are thus unlikely to reach the optimum when traits are complex (n large), and so face a barrier to further improvement of the artifact. We show, however, that this barrier can be significantly reduced in a large population of learners performing payoff-biased social learning, in which case lambda(e) becomes proportional to population size. Overall, our results illustrate the effects of errors in learning, levels of cognition, and population size for the evolution of complex cultural traits. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
We show that the dipole, a system usually proposed to model relaxation phenomena, exhibits a maximum in the signal-to-noise ratio at a nonzero noise level, thus indicating the appearance of stochastic resonance. The phenomenon occurs in two different situations, i.e., when the minimum of the potential of the dipole remains fixed in time and when it switches periodically between two equilibrium points. We have also found that the signal-to-noise ratio has a maximum for a certain value of the amplitude of the oscillating field.
Resumo:
Quantifying the spatial configuration of hydraulic conductivity (K) in heterogeneous geological environments is essential for accurate predictions of contaminant transport, but is difficult because of the inherent limitations in resolution and coverage associated with traditional hydrological measurements. To address this issue, we consider crosshole and surface-based electrical resistivity geophysical measurements, collected in time during a saline tracer experiment. We use a Bayesian Markov-chain-Monte-Carlo (McMC) methodology to jointly invert the dynamic resistivity data, together with borehole tracer concentration data, to generate multiple posterior realizations of K that are consistent with all available information. We do this within a coupled inversion framework, whereby the geophysical and hydrological forward models are linked through an uncertain relationship between electrical resistivity and concentration. To minimize computational expense, a facies-based subsurface parameterization is developed. The Bayesian-McMC methodology allows us to explore the potential benefits of including the geophysical data into the inverse problem by examining their effect on our ability to identify fast flowpaths in the subsurface, and their impact on hydrological prediction uncertainty. Using a complex, geostatistically generated, two-dimensional numerical example representative of a fluvial environment, we demonstrate that flow model calibration is improved and prediction error is decreased when the electrical resistivity data are included. The worth of the geophysical data is found to be greatest for long spatial correlation lengths of subsurface heterogeneity with respect to wellbore separation, where flow and transport are largely controlled by highly connected flowpaths.
Resumo:
Recent single-cell studies in monkeys (Romo et al., 2004) show that the activity of neurons in the ventral premotor cortex covaries with the animal's decisions in a perceptual comparison task regarding the frequency of vibrotactile events. The firing rate response of these neurons was dependent only on the frequency differences between the two applied vibrations, the sign of that difference being the determining factor for correct task performance. We present a biophysically realistic neurodynamical model that can account for the most relevant characteristics of this decision-making-related neural activity. One of the nontrivial predictions of this model is that Weber's law will underlie the perceptual discrimination behavior. We confirmed this prediction in behavioral tests of vibrotactile discrimination in humans and propose a computational explanation of perceptual discrimination that accounts naturally for the emergence of Weber's law. We conclude that the neurodynamical mechanisms and computational principles underlying the decision-making processes in this perceptual discrimination task are consistent with a fluctuation-driven scenario in a multistable regime.
Resumo:
Decisions taken in modern organizations are often multi-dimensional, involving multiple decision makers and several criteria measured on different scales. Multiple Criteria Decision Making (MCDM) methods are designed to analyze and to give recommendations in this kind of situations. Among the numerous MCDM methods, two large families of methods are the multi-attribute utility theory based methods and the outranking methods. Traditionally both method families require exact values for technical parameters and criteria measurements, as well as for preferences expressed as weights. Often it is hard, if not impossible, to obtain exact values. Stochastic Multicriteria Acceptability Analysis (SMAA) is a family of methods designed to help in this type of situations where exact values are not available. Different variants of SMAA allow handling all types of MCDM problems. They support defining the model through uncertain, imprecise, or completely missing values. The methods are based on simulation that is applied to obtain descriptive indices characterizing the problem. In this thesis we present new advances in the SMAA methodology. We present and analyze algorithms for the SMAA-2 method and its extension to handle ordinal preferences. We then present an application of SMAA-2 to an area where MCDM models have not been applied before: planning elevator groups for high-rise buildings. Following this, we introduce two new methods to the family: SMAA-TRI that extends ELECTRE TRI for sorting problems with uncertain parameter values, and SMAA-III that extends ELECTRE III in a similar way. An efficient software implementing these two methods has been developed in conjunction with this work, and is briefly presented in this thesis. The thesis is closed with a comprehensive survey of SMAA methodology including a definition of a unified framework.
Resumo:
Tämä työ luo katsauksen ajallisiin ja stokastisiin ohjelmien luotettavuus malleihin sekä tutkii muutamia malleja käytännössä. Työn teoriaosuus sisältää ohjelmien luotettavuuden kuvauksessa ja arvioinnissa käytetyt keskeiset määritelmät ja metriikan sekä varsinaiset mallien kuvaukset. Työssä esitellään kaksi ohjelmien luotettavuusryhmää. Ensimmäinen ryhmä ovat riskiin perustuvat mallit. Toinen ryhmä käsittää virheiden ”kylvöön” ja merkitsevyyteen perustuvat mallit. Työn empiirinen osa sisältää kokeiden kuvaukset ja tulokset. Kokeet suoritettiin käyttämällä kolmea ensimmäiseen ryhmään kuuluvaa mallia: Jelinski-Moranda mallia, ensimmäistä geometrista mallia sekä yksinkertaista eksponenttimallia. Kokeiden tarkoituksena oli tutkia, kuinka syötetyn datan distribuutio vaikuttaa mallien toimivuuteen sekä kuinka herkkiä mallit ovat syötetyn datan määrän muutoksille. Jelinski-Moranda malli osoittautui herkimmäksi distribuutiolle konvergaatio-ongelmien vuoksi, ensimmäinen geometrinen malli herkimmäksi datan määrän muutoksille.
Resumo:
Many species are able to learn to associate behaviours with rewards as this gives fitness advantages in changing environments. Social interactions between population members may, however, require more cognitive abilities than simple trial-and-error learning, in particular the capacity to make accurate hypotheses about the material payoff consequences of alternative action combinations. It is unclear in this context whether natural selection necessarily favours individuals to use information about payoffs associated with nontried actions (hypothetical payoffs), as opposed to simple reinforcement of realized payoff. Here, we develop an evolutionary model in which individuals are genetically determined to use either trial-and-error learning or learning based on hypothetical reinforcements, and ask what is the evolutionarily stable learning rule under pairwise symmetric two-action stochastic repeated games played over the individual's lifetime. We analyse through stochastic approximation theory and simulations the learning dynamics on the behavioural timescale, and derive conditions where trial-and-error learning outcompetes hypothetical reinforcement learning on the evolutionary timescale. This occurs in particular under repeated cooperative interactions with the same partner. By contrast, we find that hypothetical reinforcement learners tend to be favoured under random interactions, but stable polymorphisms can also obtain where trial-and-error learners are maintained at a low frequency. We conclude that specific game structures can select for trial-and-error learning even in the absence of costs of cognition, which illustrates that cost-free increased cognition can be counterselected under social interactions.
Resumo:
In this paper we consider a stochastic process that may experience random reset events which suddenly bring the system to the starting value and analyze the relevant statistical magnitudes. We focus our attention on monotonic continuous-time random walks with a constant drift: The process increases between the reset events, either by the effect of the random jumps, or by the action of the deterministic drift. As a result of all these combined factors interesting properties emerge, like the existence (for any drift strength) of a stationary transition probability density function, or the faculty of the model to reproduce power-law-like behavior. General formulas for two extreme statistics, the survival probability, and the mean exit time, are also derived. To corroborate in an independent way the results of the paper, Monte Carlo methods were used. These numerical estimations are in full agreement with the analytical predictions.
Resumo:
In this paper, we obtain sharp asymptotic formulas with error estimates for the Mellin con- volution of functions de ned on (0;1), and use these formulas to characterize the asymptotic behavior of marginal distribution densities of stock price processes in mixed stochastic models. Special examples of mixed models are jump-di usion models and stochastic volatility models with jumps. We apply our general results to the Heston model with double exponential jumps, and make a detailed analysis of the asymptotic behavior of the stock price density, the call option pricing function, and the implied volatility in this model. We also obtain similar results for the Heston model with jumps distributed according to the NIG law.
Resumo:
Quite often, in the construction of a pulp mill involves establishing the size of tanks which will accommodate the material from the various processes in which case estimating the right tank size a priori would be vital. Hence, simulation of the whole production process would be worthwhile. Therefore, there is need to develop mathematical models that would mimic the behavior of the output from the various production units of the pulp mill to work as simulators. Markov chain models, Autoregressive moving average (ARMA) model, Mean reversion models with ensemble interaction together with Markov regime switching models are proposed for that purpose.
Resumo:
Stochastic approximation methods for stochastic optimization are considered. Reviewed the main methods of stochastic approximation: stochastic quasi-gradient algorithm, Kiefer-Wolfowitz algorithm and adaptive rules for them, simultaneous perturbation stochastic approximation (SPSA) algorithm. Suggested the model and the solution of the retailer's profit optimization problem and considered an application of the SQG-algorithm for the optimization problems with objective functions given in the form of ordinary differential equation.
Resumo:
Stochastic differential equation (SDE) is a differential equation in which some of the terms and its solution are stochastic processes. SDEs play a central role in modeling physical systems like finance, Biology, Engineering, to mention some. In modeling process, the computation of the trajectories (sample paths) of solutions to SDEs is very important. However, the exact solution to a SDE is generally difficult to obtain due to non-differentiability character of realizations of the Brownian motion. There exist approximation methods of solutions of SDE. The solutions will be continuous stochastic processes that represent diffusive dynamics, a common modeling assumption for financial, Biology, physical, environmental systems. This Masters' thesis is an introduction and survey of numerical solution methods for stochastic differential equations. Standard numerical methods, local linearization methods and filtering methods are well described. We compute the root mean square errors for each method from which we propose a better numerical scheme. Stochastic differential equations can be formulated from a given ordinary differential equations. In this thesis, we describe two kind of formulations: parametric and non-parametric techniques. The formulation is based on epidemiological SEIR model. This methods have a tendency of increasing parameters in the constructed SDEs, hence, it requires more data. We compare the two techniques numerically.
Resumo:
Maintenance of thermal homeostasis in rats fed a high-fat diet (HFD) is associated with changes in their thermal balance. The thermodynamic relationship between heat dissipation and energy storage is altered by the ingestion of high-energy diet content. Observation of thermal registers of core temperature behavior, in humans and rodents, permits identification of some characteristics of time series, such as autoreference and stationarity that fit adequately to a stochastic analysis. To identify this change, we used, for the first time, a stochastic autoregressive model, the concepts of which match those associated with physiological systems involved and applied in male HFD rats compared with their appropriate standard food intake age-matched male controls (n=7 per group). By analyzing a recorded temperature time series, we were able to identify when thermal homeostasis would be affected by a new diet. The autoregressive time series model (AR model) was used to predict the occurrence of thermal homeostasis, and this model proved to be very effective in distinguishing such a physiological disorder. Thus, we infer from the results of our study that maximum entropy distribution as a means for stochastic characterization of temperature time series registers may be established as an important and early tool to aid in the diagnosis and prevention of metabolic diseases due to their ability to detect small variations in thermal profile.
Resumo:
This research studied the project performance measurement from the perspective of strategic management. The objective was to find a generic model for project performance measurement that emphasizes strategy and decision making. Research followed the guidelines of a constructive research methodology. As a result, the study suggests a model that measures projects with multiple meters during and after projects. Measurement after the project is suggested to be linked to the strategic performance measures of a company. The measurement should be conducted with centralized project portfolio management e.g. using the project management office in the organization. Metrics, after the project, measure the project’s actual benefit realization. During the project, the metrics are universal and they measure the accomplished objectives relation to costs, schedule and internal resource usage. Outcomes of these measures should be forecasted by using qualitative or stochastic methods. Solid theoretical background for the model was found from the literature that covers the subjects of performance measurement, projects and uncertainty. The study states that the model can be implemented in companies. This statement is supported by empirical evidence from a single case study. The gathering of empiric evidence about the actual usefulness of the model in companies is left to be done by the evaluative research in the future.