984 resultados para Steam shovels


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments based on a 2(3) central composite full factorial design were carried out in 200-ml stainless-steel containers to study the pretreatment, with dilute sulfuric acid, of a sugarcane bagasse sample obtained from a local sugar-alcohol mill. The independent variables selected for study were temperature, varied from 112.5A degrees C to 157.5A degrees C, residence time, varied from 5.0 to 35.0 min, and sulfuric acid concentration, varied from 0.0% to 3.0% (w/v). Bagasse loading of 15% (w/w) was used in all experiments. Statistical analysis of the experimental results showed that all three independent variables significantly influenced the response variables, namely the bagasse solubilization, efficiency of xylose recovery in the hemicellulosic hydrolysate, efficiency of cellulose enzymatic saccharification, and percentages of cellulose, hemicellulose, and lignin in the pretreated solids. Temperature was the factor that influenced the response variables the most, followed by acid concentration and residence time, in that order. Although harsher pretreatment conditions promoted almost complete removal of the hemicellulosic fraction, the amount of xylose recovered in the hemicellulosic hydrolysate did not exceed 61.8% of the maximum theoretical value. Cellulose enzymatic saccharification was favored by more efficient removal of hemicellulose during the pretreatment. However, detoxification of the hemicellulosic hydrolysate was necessary for better bioconversion of the sugars to ethanol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the lifecycle assessment (LCA) of fuel ethanol, as 100% of the vehicle fuel, from sugarcane in Brazil. The functional unit is 10,000 km run in an urban area by a car with a 1,600-cm(3) engine running on fuel hydrated ethanol, and the resulting reference flow is 1,000 kg of ethanol. The product system includes agricultural and industrial activities, distribution, cogeneration of electricity and steam, ethanol use during car driving, and industrial by-products recycling to irrigate sugarcane fields. The use of sugarcane by the ethanol agribusiness is one of the foremost financial resources for the economy of the Brazilian rural area, which occupies extensive areas and provides far-reaching potentials for renewable fuel production. But, there are environmental impacts during the fuel ethanol lifecycle, which this paper intents to analyze, including addressing the main activities responsible for such impacts and indicating some suggestions to minimize the impacts. This study is classified as an applied quantitative research, and the technical procedure to achieve the exploratory goal is based on bibliographic revision, documental research, primary data collection, and study cases at sugarcane farms and fuel ethanol industries in the northeast of SA o pound Paulo State, Brazil. The methodological structure for this LCA study is in agreement with the International Standardization Organization, and the method used is the Environmental Design of Industrial Products. The lifecycle impact assessment (LCIA) covers the following emission-related impact categories: global warming, ozone formation, acidification, nutrient enrichment, ecotoxicity, and human toxicity. The results of the fuel ethanol LCI demonstrate that even though alcohol is considered a renewable fuel because it comes from biomass (sugarcane), it uses a high quantity and diversity of nonrenewable resources over its lifecycle. The input of renewable resources is also high mainly because of the water consumption in the industrial phases, due to the sugarcane washing process. During the lifecycle of alcohol, there is a surplus of electric energy due to the cogeneration activity. Another focus point is the quantity of emissions to the atmosphere and the diversity of the substances emitted. Harvesting is the unit process that contributes most to global warming. For photochemical ozone formation, harvesting is also the activity with the strongest contributions due to the burning in harvesting and the emissions from using diesel fuel. The acidification impact potential is mostly due to the NOx emitted by the combustion of ethanol during use, on account of the sulfuric acid use in the industrial process and because of the NOx emitted by the burning in harvesting. The main consequence of the intensive use of fertilizers to the field is the high nutrient enrichment impact potential associated with this activity. The main contributions to the ecotoxicity impact potential come from chemical applications during crop growth. The activity that presents the highest impact potential for human toxicity (HT) via air and via soil is harvesting. Via water, HT potential is high in harvesting due to lubricant use on the machines. The normalization results indicate that nutrient enrichment, acidification, and human toxicity via air and via water are the most significant impact potentials for the lifecycle of fuel ethanol. The fuel ethanol lifecycle contributes negatively to all the impact potentials analyzed: global warming, ozone formation, acidification, nutrient enrichment, ecotoxicity, and human toxicity. Concerning energy consumption, it consumes less energy than its own production largely because of the electricity cogeneration system, but this process is highly dependent on water. The main causes for the biggest impact potential indicated by the normalization is the nutrient application, the burning in harvesting and the use of diesel fuel. The recommendations for the ethanol lifecycle are: harvesting the sugarcane without burning; more environmentally benign agricultural practices; renewable fuel rather than diesel; not washing sugarcane and implementing water recycling systems during the industrial processing; and improving the system of gases emissions control during the use of ethanol in cars, mainly for NOx. Other studies on the fuel ethanol from sugarcane may analyze in more details the social aspects, the biodiversity, and the land use impact.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The proposed method to analyze the composition of the cost of electricity is based on the energy conversion processes and the destruction of the exergy through the several thermodynamic processes that comprise a combined cycle power plant. The method uses thermoeconomics to evaluate and allocate the cost of exergy throughout the processes, considering costs related to inputs and investment in equipment. Although the concept may be applied to any combined cycle or cogeneration plant, this work develops only the mathematical modeling for three-pressure heat recovery steam generator (HRSG) configurations and total condensation of the produced steam. It is possible to study any n x 1 plant configuration (n sets of gas turbine and HRSGs associated to one steam turbine generator and condenser) with the developed model, assuming that every train operates identically and in steady state. The presented model was conceived from a complex configuration of a real power plant, over which variations may be applied in order to adapt it to a defined configuration under study [Borelli SJS. Method for the analysis of the composition of electricity costs in combined cycle thermoelectric power plants. Master in Energy Dissertation, Interdisciplinary Program of Energy, Institute of Eletro-technical and Energy, University of Sao Paulo, Sao Paulo, Brazil, 2005 (in Portuguese)]. The variations and adaptations include, for instance, use of reheat, supplementary firing and partial load operation. It is also possible to undertake sensitivity analysis on geometrical equipment parameters. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many works have shown the potential of the Brazilian sugarcane industry as an electricity supplier. However, few studies have studied how this potential could be achieved without jeopardizing the production of sugar and ethanol. Also, the impact of modifications in the cogeneration plant on the costs of production of sugar and ethanol has not been evaluated. This paper presents an approach to the problem of exergy optimization of cogeneration systems in sugarcane mills. A general model to the sugar and ethanol production processes is developed based on data supplied by a real plant, and an exergy analysis is performed. A discussion is made about the variables that most affect the performance of the processes. Then, a procedure is presented to evaluate modifications in the cogeneration system and in the process, and their impact on the production costs of sugar, ethanol and electricity. Furthermore, a discussion on the renewability of processes is made based on an exergy index of renewability. As a general conclusion, besides adding a new revenue to the mill, the generation of excess electricity improves the exergo-environmental performance of the mill as a whole. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aimed to evaluate the chemical composition of Baccharis dracunculifolia essential oil and the water soluble oil obtained by steam distillation that were analyzed by GC and GUMS. in the first hour of distillation, B. dracunculifolia aerial parts yielded 0.08% oil and in the second hour, 0.27%. The oil recovered from the distillate water yielded 0.18 g/L in the first hour and 0.44 g/L in the second hour of distillation. The main volatile compounds identified in the distillate water were aromatic compounds and sesquiterpene alcohols.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we compare the hydrothermal stability performance of a Templated Molecular Sieve Silica (TMSS) membrane against a standard, non-templated Molecular Sieve Silica (MSS) membrane. The tests were carried under dry and wet (steam) conditions for single gas (He, H2, CO and CO2) at 1-2 atm membrane pressure drop at 200oC. Single gas TMSS membrane H2, permeance and H2/CO permselectivity was found to be 2.05 x 10-8 mols.m-2.s-1.Pa-1 and 15, respectively. The MSS membrane showed similar selectivity, but increased overall flux. He permeance through membranes decayed at a rate of 4-5 x 10-10 mols.m-2.s-1.Pa-1 per day regardless of membrane ambience (dry or wet). Although H2/CO permselectivity of the TMSS membrane slightly improved from 15 to 18 after steam testing, the MSS membrane resulted in significant reduction from 16 to 8.3. In addition, membrane regeneration after more than 50 days resulted in the TMSS membrane reverting to its original permeation levels while no significant improvements were observed for the MSS membra ne. Results showed that the TMSS membrane had enhanced hydrothermal stability and regeneration ability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MSS membranes are a good candidate for CO cleanup in fuel cell fuel processing systems due to their ability to selectively permeate H2 over CO via molecular sieving. Successfully scaled up tubular membranes were stable under dry conditions to 400°C with H2 permeance as high as 2 x 10-6 mol.m-2.s^-1.Pa^-1 at 200 degrees C and H2/CO selectivity up to 6.4, indicating molecular sieving was the dominant mechanism. A novel carbonised template molecular sieve silica (CTMSS) technology gave the scaled up membranes resilience in hydrothermal conditions up to 400 degrees C in 34% steam and synthetic reformate, which is required for use in fuel cell CO cleanup systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate here a modification of the discrete random pore model [Bhatia SK, Vartak BJ, Carbon 1996;34:1383], by including an additional rate constant which takes into account the different reactivity of the initial pore surface having attached functional groups and hydrogens, relative to the subsequently exposed surface. It is observed that the relative initial reactivity has a significant effect on the conversion and structural evolution, underscoring the importance of initial surface chemistry. The model is tested against experimental data on chemically controlled char oxidation and steam gasification at various temperatures. It is seen that the variations of the reaction rate and surface area with conversion are better represented by the present approach than earlier random pore models. The results clearly indicate the improvement of model predictions in the low conversion region, where the effect of the initially attached functional groups and hydrogens is more significant, particularly for char oxidation. It is also seen that, for the data examined, the initial surface chemistry is less important for steam gasification as compared to the oxidation reaction. Further development of the approach must also incorporate the dynamics of surface complexation, which is not considered here.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study compared two heating methods currently used for antigen retrieval (AR) immunostaining: the microwave oven and the steam cooker. Myosin-V, a molecular motor involved in vesicle transport, was used as a neuronal marker in honeybee Apis mellifera brains fixed in formalin. Overall, the steam cooker showed the most satisfactory AR results. At 100 degrees C, tissue morphology was maintained and revealed epitope recovery, while evaporation of the AR solution was markedly reduced; this is important for stabilizing the sodium citrate molarity of the AR buffer and reducing background effects. Standardization of heat-mediated AR of formalin-fixed and paraffin-embedded tissue sections results in more reliable immunostaining of the honeybee brain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pecans from the cultivars Wichita and Western Schley [Carya illinoinensis (Wangenh.) K. Koch] collected over three years were analyzed for the following constituents: total lipid content; fatty acid profiles; sucrose content; protein; total dietary fiber; the minerals magnesium, calcium, potassium, sulfur, phosphorus, boron, copper, iron, manganese, sodium, zinc, and aluminum; vitamin C; and lipase; and lipoxygenase activities. Year of harvest and cultivar had little effect on the composition of the pecans. Overall, protein content was the only constituent that differed between pecans grown in Australia and those grown in the United States. This difference is probably related to differences in growing location and horticultural practices between the two countries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Research on the stability of flavours during high temperature extrusion cooking is reviewed. The important factors that affect flavour and aroma retention during the process of extrusion are illustrated. A substantial number of flavour volatiles which are incorporated prior to extrusion are normally lost during expansion, this is because of steam distillation. Therefore, a general practice has been to introduce a flavour mix after the extrusion process. This extra operation requires a binding agent (normally oil), and may also result in a non-uniform distribution of the flavour and low oxidative stability of the flavours exposed on the surface. Therefore, the importance of encapsulated flavours, particularly the beta -cyclodextrin-flavour complex, is highlighted in this paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon gasification with steam to produce H-2 and CO is an important reaction widely used in industry for hydrogen generation. Although the literature is vast, the. mechanism for the formation of H-2 is still unclear. In particular, little has, been done to investigate the potential of molecular orbital theory to distinguish different mechanism possibilities. In this work, we used molecular orbital theory to demonstrate a favorable energetic pathway where H2O is first physically adsorbed on the virgin graphite surface with negligible change in molecular structure. Chemisorption occurs via O approaching the carbon edge site with one H atom stretching away from the O in the transition state. This is followed by a local minimum. state in which the stretching H is further disconnected from the O atoms and the remaining OH group is still on the carbon edge site. The disconnected H then pivot around the OH group to bond with the H of the OH group and forms H-2. The O atom remaining on the carbon edge site is subsequently desorbed as CO. The reverse occurs when H-2 reacts with the surface oxygen to produce H2O.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Two broiler experiments and a layer experiments were conducted on Kunitz trypsin inhibitor (Kti) soybeans (SB) of low trypsin inhibitor (TI) activity to determine their nutritive value when included as mash in least-cost poultry diets. 2. Experiment 1 compared chick performance on the Kti or raw SB using a commercial full-fat SB meal (FFSBM) and a solvent extracted SB meal (SBM) as controls during a 20 d experimental period. Broiler experiment 2 compared Kti and raw SB, non-steamed, or steam-pelleted with and without DL-methionine supplementation added to every treatment containing 170 g SB/kg. For each broiler experiment the levels of each SB were 70, 120 and 170 g/kg with the control birds fed only 170 g SB/kg. 3. The layer experiment, compared steam-pelleted Kti and raw SB against a non-steamed Kti and raw SB each fed at two levels (70 and 110 g/kg) x 30 replicates from 29 weeks of age for 19 weeks in a completely randomised design. Production parameters were measured when diets were formulated to contain minimum required specifications and calculated apparent metabolisable energy (AME). At the completion of each trial, 2 broiler birds from each cage and 5 layer birds per treatment were killed, weighed, and their liver and pancreas weighed. 4. Both broiler experiments indicated that production parameters on the Kti SB treatments were significantly lower (P < 0.05) than on the two commercial control SB treatments. However, the Kti treatments were superior to the raw SB treatments. 5. Pancreas weight increased with increasing inclusion of both raw and Kti SB, suggesting that a TI was causing the depression in performance. The AME of the Kti SB was similar to that of commercial FFSB meal. After steam conditioning, the raw SB meal AME value of 9.5 MJ/kg dry matter (DM) was improved to 14.1 MJ/kg DM by reduced TI activity, but this AME improvement with TI activity reduction, plus the supplementation with DL-methionine on birds fed the raw SB had no effect (P > 0.05) on any parameter evaluated in experiment 2. 6. The layer experiment showed that hens on the Kti SB treatments had significantly greater live weight gain (LWG), egg weight and daily egg mass than birds given raw SB. A reduced food intake (FI) was observed in the Kti treatments but egg mass was generally similar to that on the FFSB control diet, indicating that Kti SB supported excellent egg production at an inclusion of 110 g/kg. The depressed performance observed for broiler chicks suggest that younger birds are more susceptible to the effects of SB TI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O pinheiro tem um papel importante na ecologia e economia nacional. O Pinheiro sofre de uma praga severa, denominada por doença da murchidão dos pinheiros, causada pelo nemátodo da madeira do pinheiro (NMP). Apresenta-se como um verme microscópico, invertebrado, medindo menos de 1,5 mm de comprimento. O contágio entre árvores deve-se a vectores biologicamente conhecidos por longicórneo e capricórnio do pinheiro. Os produtores de madeira de pinho são desta forma obrigados a efectuar tratamentos térmicos (HT), de eliminação do NMP e dos seus vectores para que a exportação da madeira serrada cumpra com a norma NP 4487. De modo a manter a competitividade internacional das empresas nacionais, o impacto dos custos do HT deve ser minimizado. O objectivo desta dissertação é efectuar o estudo técnico-económico da implementação de um sistema de cogeração capaz produzir calor para efectuar o tratamento ao NMP e simultaneamente energia eléctrica para vender à rede pública. As receitas da venda de energia eléctrica poderão contribuir para a minimização dos custos do HT. Tendo em conta que os resíduos das serrações de madeira podem ser usados como combustível consideraram-se para avaliação duas tecnologias de cogeração, um sistema de turbina a vapor clássico (ciclo Rankine) e um sistema Organic Rankine Cycle (ORC), permitindo ambas a queima dos resíduos das serrações de madeira. No que diz respeito à avaliação económica, foi desenvolvido um simulador de tecnologia/modalidade de remuneração que efectua cálculos consoante as necessidades térmicas de cada produtor, a potência eléctrica a instalar e indicadores económicos, VAL, TIR e PAYBACK da instalação do sistema de cogeração. O simulador desenvolvido aplica a nova legislação que enquadra o sistema jurídico e remuneratório da cogeração (DL 23/2010), na qual se consideram duas modalidades, geral e especial. A metodologia desenvolvida foi aplicada num caso real de uma serração de madeira e os principais resultados mostram que as soluções apresentadas, turbina a vapor e sistema ORC, não apresentam viabilidade económica. Através da análise de sensibilidade, conclui-se que um dos factores que mais influência a viabilidade económica do projecto é o tempo de funcionamento reduzido. Sendo uma das soluções apresentada a criação de uma central de cogeração para vários produtores de madeira. Uma possível solução para o problema do reduzido tempo de utilização seria o fornecimento do serviço de tratamentos térmicos a outros produtores de paletes de madeira que não possuem estufa própria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mestrado em Engenharia Química