945 resultados para Somatic Support Cells
Resumo:
The human skin not only provides passive protection as a physical barrier against external injury, but also mediates active surveillance via epidermal cell surface receptors that recognize and respond to potential invaders. Primary keratinocytes and immortalized cell lines, the commonly used sources to investigate immune responses of cutaneous epithelium are often difficult to obtain and/or potentially exhibit changes in cellular genetic make-up. Here we investigated the possibility of using salivary epithelial cells (SEC) to evaluate the host response to cutaneous microbes. Elevated secretion of IFN-γ and IL-12 was observed in the SEC stimulated with Staphylococcus aureus, a transient pathogen of the skin, as mono species biofilm as compared to SEC stimulated with a commensal microbe, the Staphylococcus epidermidis. Co-culture of the SEC with both microbes as dual species biofilm elicited maximum cytokine response. Stimulation with S. aureus alone but not with S. epidermidis alone induced maximum toll-like receptor-2 (TLR-2) expression in the SEC. Exposure to dual species biofilm induced a sustained upregulation of TLR-2 in the SEC for up to an hour. The data support novel application of the SEC as efficient biospecimen that may be used to investigate personalized response to cutaneous microflora. © 2013 Wiley Periodicals, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Streptococcus mutans, the predominant bacterial species associated with dental caries, can enter the bloodstream and cause infective endocarditis. The aim of this study was to investigate S. mutans biofilm formation and adherence to endothelial cells induced by human fibrinogen. The putative mechanism by which biofilm formation is induced as well as the impact of fibrinogen on S. mutans resistance to penicillin was also evaluated. Bovine plasma dose dependently induced biofilm formation by S. mutans. Of the various plasma proteins tested, only fibrinogen promoted the formation of biofilm in a dose-dependent manner. Scanning electron microscopy observations revealed the presence of complex aggregates of bacterial cells firmly attached to the polystyrene support. S. mutans in biofilms induced by the presence of fibrinogen was markedly resistant to the bactericidal effect of penicillin. Fibrinogen also significantly increased the adherence of S. mutans to endothelial cells. Neither S. mutans cells nor culture supernatants converted fibrinogen into fibrin. However, fibrinogen is specifically bound to the cell surface of S. mutans and may act as a bridging molecule to mediate biofilm formation. In conclusion, our study identified a new mechanism promoting S. mutans biofilm formation and adherence to endothelial cells which may contribute to infective endocarditis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The myeloid differentiation factor 88 (MyD88) plays a pivotal role in Toll-like receptor (TLR)- and interleukin-1 receptor (IL-1R)-induced osteoclastogenesis. We examined the role of MyD88 on p38 mitogen-activated protein kinase (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) activation and nucleotide-binding oligomerization domain (Nod) induction by lipopolysaccharide (LPS) and IL-1 beta, and their effect on receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) production in bone marrow stromal cell (BMSC). RANKL, Nod1, Nod2, NF-κB, and p38 protein levels were determined by Western blot. Nod2 was stimulated with muramyl dipeptide (MDP) prior to TLR4 stimulation with LPS. MyD88 deficiency markedly inhibited RANKL expression after LPS stimulation and increased OPG messenger RNA (mRNA) production. Also, MyD88 was necessary for NF-κB and p38 MAPK activation. MDP alone did not induce RANKL and OPG expressions; however, when combined with LPS, their expressions were significantly increased (p < 0.05). Our results support that MyD88 signaling has a pivotal role in osteoclastogenesis thought NF-κB and p38 activation. Nod2 and especially Nod1 levels were influenced by MyD88.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
To evaluate the biochemical profile and protein concentration of whey from milk samples of healthy Murrah primiparous and pluriparous buffaloes, 30 female buffaloes were analyzed during a complete lactation. The animals were divided into three groups: G1 = 10 primiparous buffaloes, G2 = 10 pluriparous buffaloes with 2-3 lactations and G3 = 10 pluriparous buffaloes with > 3 lactations. The lactation period was divided into: early stage (I: 1-3 months of lactation), intermediate stage (T: 4-6 months of lactation) and final stage (F: 7-9 months of lactation). Before milk sampling, physical examination of the mammary gland, strip cup test and California Mastitis Test (CMT) were performed. After mammary quarters asepsis, 20mL of milk were collected monthly from each mammary quarter, during a complete lactation, in sterilized plastic bottles without preservative, in order to perform microbiological isolation, biochemical profile and protein electrophoresis in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and 30mL of milk from each mammary quarter were collect, in sterilized plastic bottles containing preservative bronopol to perform the somatic cell count (SCC). A total of 1,042 milk samples were collected from the experimental groups during lactation, of which 923 samples showed negative reaction to CMT and negative microbiological isolation and were selected to biochemical profile analysis and protein electrophoresis in SDS-PAGE. There were influence of parity order and stage of lactation in biochemical profile and protein concentration of healthy Murrah buffaloes'whey. Primiparous buffaloes (G1) showed higher gamma-glutamyltransferase (GGT: 2,346 U/L), alkaline phosphatase (ALP: 181 U/L), phosphorus (P; 56.6mg/dL), potassium (K; 32.0mg/dL) and alpha-lactalbumin (458mg/dL). Buffaloes with 2-3 lactations (G2) showed higher SCC (70,700 cells/mL) and higher concentrations of total protein (1.55g/dL), albumin (100mg/dL), magnesium (Mg; 8.80mg/dL), chlorides (Cl; 176mg/dL), iron (Fe; 10.7 mu g/dL), sodium (Na; 178mMol/L) and lactoferrin (59.5mg/dL). Bufalloes with > 3 lactations (G3) showed higher concentrations of total calcium (Ca; 41.8mg/dL), ionized calcium (iCa; 2.92mMol/L), immunoglobulin A (IgA; 1.32mg/dL), serum albumin (99.1mg/dL), immunoglobulin G (IgG; 49.7mg/dL) and beta-lactoglobulin (1,068mg/dL). During lactation it was observed increase in SCC, GGT, ALP, total protein, albumin, P, Mg, Cl, Na, lactoferrin, serum albumin, IgG and alpha-lactalbumin, as well as decrease in concentrations of Ca, Fe, iCa, K, IgA and beta-lactoglobulin in buffaloes'whey. The results may be used as reference for buffaloes and to support diagnosis and prognosis of diseases common to lactation periods.
Resumo:
The number and activity of natural killer (NK) cells were studied in 34 untreated patients with paracoccidioidomycosis, 20 with the chronic form of the disease and 14 with the acute form. NK cells were detected with monoclonal antibody Leu-11c and the cytotoxic activity was measured using a single cell assay against K562 target cells. Both groups of patients had an increased number of circulating NK cells, their cytotoxic activity being significantly lower than in the healthy controls. These findings may be of importance in the immunological disturbances associated with paracoccidioidomycosis since NK cells exert important immune effector functions and may play a role in resistance against Paracoccidioides brasiliensis.
Resumo:
Congenital lipomatous overgrowth with vascular, epidermal, and skeletal anomalies (CLOVES) is a sporadically occurring, nonhereditary disorder characterized by asymmetric somatic hypertrophy and anomalies in multiple organs. We hypothesized that CLOVES syndrome would be caused by a somatic mutation arising during early embryonic development. Therefore, we employed massively parallel sequencing to search for somatic mosaic mutations in fresh, frozen, or fixed archival tissue from six affected individuals. We identified mutations in PIK3CA in all six individuals, and mutant allele frequencies ranged from 3% to 30% in affected tissue from multiple embryonic lineages. Interestingly, these same mutations have been identified in cancer cells, in which they increase phosphoinositide-3-kinase activity. We conclude that CLOVES is caused by postzygotic activating mutations in PIK3CA. The application of similar sequencing strategies will probably identify additional genetic causes for sporadically occurring, nonheritable malformations.
Resumo:
Bone marrow is a source of stem cells for greater and easier access, which is widely studied as a provider of hematopoietic and mesenchymal cells for various purposes, mainly therapeutic by the advances in research involving cell therapy. The swine is an animal species commonly used in the pursuit of development of experimental models. Thus, this study aimed to standardize protocol for collection and separation of bone marrow in swines, since this species is widely used as experimental models for various diseases. Twelve animals were used, which underwent bone marrow puncture with access from the iliac crest and cell separation by density gradient followed by a viability test with an average of 98% of viable cells. Given our results, we can ensure the swine as an excellent model for obtaining and isolation of mononuclear cells from bone marrow, stimulating several studies addressing the field of cell therapy. Microsc. Res. Tech., 2012. (C) 2012 Wiley Periodicals, Inc.
Resumo:
Endogenous levels of IAA, ABA and four types of CKs were analyzed in zygotic and indirect (ISE) and direct somatic embryogenesis of Acca sellowiana. Zygotic and somatic embryos at different developmental stages were sampled for morphological and hormonal analysis. Both embryo types showed substantial asymmetry in hormone levels. Zygotic embryos displayed a conspicuous peak of IAA in early developmental stages. The results outlined the hormonal variations occurring during zygotic and somatic embryogenesis regarding the timing, nature and hormonal status involved in both processes. The short transient pulse of IAA observed on the 3rd day in culture was suggested to be involved with the signaling for the induction of somatic embryogenesis. Fertilized ovule development was associated with increased IAA levels 21-24 days after pollination, followed by a sharp decrease in the cotyledonary stage, both in zygotic and somatic embryos. There was a prominent increase in ABA levels in cultures which generated ISE 24-30 days after pollination, a period that corresponds to the heart and torpedo stages. The levels of total CKs (Z, [9R]Z, iP and [9R]iP) were also always higher in zygotic than in somatic embryogenesis. While zygotic embryogenesis was dominated by the presence of zeatin, the somatic process, contrarily, was characterized by a large variation of the other cytokinin forms and amounts studied. The above results, when taken together, could be related to the previously observed high frequency formation of anomalous somatic embryos formed in A. sellowiana, as well as to their low germination ability.
Resumo:
The genus Orobothriurus Maury, 1976 (Bothriuridae Simon, 1880) displays an Andean pattern of distribution, most of its species occurring at high altitudes (over 2000-2500 m to a maximum altitude record of 4910 m) from central Peru to Argentina. The recent discovery of several new species and the uncertain phylogenetic position of Orobothriurus lourencoi Ojanguren Affilastro, 2003, required a reanalysis of Orobothriurus phylogeny. Thirty bothriurid taxa, including all species of Orobothriurus and Pachakutej Ochoa, 2004, were scored for 65 morphological characters and analysed with parsimony under equal and implied weighting. The resulting topology justifies the establishment of a new genus, Rumikiru Ojanguren Affilastro et al., in press, for O. lourencoi and a closely related, new species, Rumikiru atacama Ojanguren Affilastro et al., in press. It also offers new insights about the phylogeny and biogeography of Orobothriurus and related genera. Characters from the male genitalia (i.e. hemispermatophore), comprising approximately 26% of the morphological matrix, were found to be less homoplastic than those from somatic morphology, contradicting suggestions that genitalia are uninformative or potentially misleading in phylogenetic studies.