935 resultados para Simulation and experimental results
Resumo:
B. ovis pathogenicity was evaluated in experimentally inoculated and naturally infected rams. Ten animals were submitted to simultaneous conjunctival and intrapreputial inoculation with 2x109 CFU/ mL of B. ovis REO 198. After that, animals underwent physical examination and blood samples were collected for serology every week. Positive serology results started to be observed in the 3rd week, with fluctuations in titers. Clinical changes began in the 5th week after inoculation and were associated with positive serology in the acute phase of the disease. Presence of B. ovis in semen and urine culture was intermittent. Three non-inoculated animals showed natural infection. B. ovis was shed twice in semen of one serology-negative animal. The study underscored the pathogenic characteristics of B. ovis REO 198 in Santa Inês rams, as well as the importance of animals as potential sources of infection.
Resumo:
In this paper, a combined theoretical and experimental study on the electronic structure and photoluminescence (PL) properties of beta zinc molybdate (β-ZnMoO4) microcrystals synthesized by the hydrothermal method has been employed. These crystals were structurally characterized by X-ray diffraction (XRD), Rietveld refinement, Fourier transform Raman (FT-Raman) and Fourier transform infrared (FT-IR) spectroscopies. Their optical properties were investigated by ultraviolet-visible (UV-Vis) absorption spectroscopy and PL measurements. First-principles quantum mechanical calculations based on the density functional theory at the B3LYP level have been carried out. XRD patterns, Rietveld refinement, FT-Raman and FT-IR spectra showed that these crystals have a wolframite-type monoclinic structure. The Raman and IR frequencies experimental results are in reasonable agreement with theoretically calculated results. UV-Vis absorption measurements shows an optical band gap value of 3.17 eV, while the calculated band structure has a value of 3.22 eV. The density of states indicate that the main orbitals involved in the electronic structure of β-ZnMoO4 crystals are (O 2p-valence band and Mo 4d-conduction band). Finally, PL properties of β-ZnMoO4 crystals are explained by means of distortions effects in octahedral [ZnO6] and [MoO6] clusters and inhomogeneous electronic distribution into the lattice with the electron density map. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The tetrahydroquinoline derivatives can be easily synthesized through Povarov reaction and have several important biological activities. This work describes a comparative study for the unequivocal assignment of molecular structure of different tetrahydroquinoline derivatives, through a complete analysis of NMR 1D and 2D NMR spectra (1H, 13C, COSY, HSQC, and HMBC), and the correlation this data with theoretical calculations of energy-minimization and chemical shift (δ), employing the theory level of DFT/B3LYP with set of the cc-pVDZ basis. For these derivatives the experimental analyses and the theoretical model adopted were sufficient to obtain a good description of its structures, and these results can be used to assign the structure of various others tetrahydroquinoline derivatives. © 2013 Springer Science+Business Media New York.
Resumo:
A recent trend in networked control systems (NCSs) is the use of wireless networks enabling interoperability between existing wired and wireless systems. One of the major challenges in these wireless NCSs (WNCSs) is to overcome the impact of the message loss that degrades the performance and stability of these systems. Moreover, this impact is greater when dealing with burst or successive message losses. This paper discusses and presents the experimental results of a compensation strategy to deal with this burst message loss problem in which a NCS mathematical model runs in parallel with the physical process, providing sensor virtual data in case of packet losses. Running in real-time inside the controller, the mathematical model is updated online with real control signals sent to the actuator, which provides better reliability for the estimated sensor feedback (virtual data) transmitted to the controller each time a message loss occurs. In order to verify the advantages of applying this model-based compensation strategy for burst message losses in WNCSs, the control performance of a motor control system using CAN and ZigBee networks is analyzed. Experimental results led to the conclusion that the developed compensation strategy provided robustness and could maintain the control performance of the WNCS against different message loss scenarios.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper presents a computational fluid dynamics (CFD) application about the axial fan design used in an agricultural spraying system with a theoretical and experimental analysis of comparative results between the characteristic curves of a fan for several rotations and numerical results for the influence of blade attack angle variation and optimization of the spraying system, both for a same rotation. Flow was considered three-dimensional, turbulent, isothermal, viscous and non-compressible in a steady state, disregarding any influence of the gravity field. The average turbulent field was obtained from the application of time average where the turbulence model required for closing the set of equations was the k-E model. Resolution of all connected phenomena was achieved with the help of a fluid dynamics computer, CFX, which uses the finite volumes technique as a numerical method. In order to validate the theoretical analysis, an experiment was conducted in a circular section of a horizontal wind tunnel, using a Pitot tube for pressure readings. The main results demonstrate that the methodology used, based on CFD techniques, is able to reproduce the phenomenological behavior of an axial fan in a spraying system because results were very reliable and similar to experimentally measured ones.
Resumo:
MgTiO3 (MTO) thin films were prepared by the polymeric precursor method with posterior spin-coating deposition. The films were deposited on Pt(111)/Ti/SiO2/Si(100) substrates and heat treated at 350 °C for 2 h and then heat treated at 400, 450, 500, 550, 600, 650 and 700 °C for 2 h. The degree of structural order−disorder, optical properties, and morphology of the MTO thin films were investigated by X-ray diffraction (XRD), micro-Raman spectroscopy (MR), ultraviolet− visible (UV−vis) absorption spectroscopy, photoluminescence (PL) measurements, and field-emission gun scanning electron microscopy (FEG-SEM) to investigate the morphology. XRD revealed that an increase in the annealing temperature resulted in a structural organization of MTO thin films. First-principles quantum mechanical calculations based on density functional theory (B3LYP level) were employed to study the electronic structure of ordered and disordered asymmetric models. The electronic properties were analyzed, and the relevance of the present theoretical and experimental results was discussed in the light of PL behavior. The presence of localized electronic levels and a charge gradient in the band gap due to a break in the symmetry are responsible for the PL in disordered MTO lattice.
Resumo:
In this paper, we report a detailed structural and electronic characterization of PbMoO4 crystals by using a conventional hydrothermal (CH) method. The samples were characterized by X-ray diffraction (XRD), Fourier transform Raman (FT-Raman), field-emission gun scanning electron microscopy (FEG-SEM) and photoluminescence (PL) measurements. In addition, first-principles quantum mechanical calculations based on the density functional theory were employed in order to understand the band structure and density of states for the PbMoO4. Analysis of both theoretical and experimental results allows to rationalize the role of order-disorder effects in the observed green PL emissions in these ordered powders.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Monitoring of the kinetics of production of serum antibodies to multiple mycobacterial antigens can be useful as a diagnostic tool for the detection of Mycobacterium bovis infection as well as for the characterization of disease progression and the efficacy of intervention strategies in several species. The humoral immune responses to multiple M. bovis antigens by white-tailed deer vaccinated with BCG orally via a lipid-formulated bait (n = 5), orally in liquid form (n = 5), and subcutaneously (n = 6) were evaluated over time after vaccination and after experimental challenge with virulent M. bovis and were compared to the responses by unvaccinated deer (n = 6). Antibody responses were evaluated by using a rapid test (RT), a multiantigen print immunoassay (MAPIA), a lipoarabinomannan enzyme-linked immunosorbent assay (LAM-ELISA), and immunoblotting to whole-cell sonicate and recombinant antigen MPB83. MAPIA and RT detected minimal to no antibody responses over those at the baseline to multiple M. bovis antigens in vaccinated white-tailed deer after challenge. This was in contrast to the presence of more readily detectable antibody responses in nonvaccinated deer with more advanced disease. The LAM-ELISA results indicated an overall decrease in the level of production of detectable antibodies against lipoarabinomannan-enriched mycobacterial antigen in vaccinated animals compared to that in nonvaccinated animals after challenge. Immunoblot data were inconsistent but did suggest the occurrence of unique antibody responses by certain vaccinated groups to Ag85 and HSP70. These findings support further research toward the improvement and potential use of antibody-based assays, such as MAPIA, RT, and LAM-ELISA, as tools for the antemortem assessment of disease progression in white-tailed deer in both experimental and field vaccine trials.
Resumo:
Increased railroad traffic volumes, speeds, and axle loads have created a need to better measure track quality. Previous research has indicated that the vertical track deflection provides a meaningful indicator of track integrity. The measured deflection can be related to the bending stresses in the rail as well as characterize the mechanical response of the track. This investigation summarizes the simulation, analysis and development of a measurement system at the University of Nebraska (UNL) to measure vertical track deflection in real-time from a car moving at revenue speeds. The UNL system operates continuously over long distances and in revenue service. Using a camera and two line lasers, the system establishes three points of the rail shape beneath the loaded wheels and over a distance of 10 ft. The resulting rail shape can then be related to the actual bending stress in the rail and estimate the track support through beam theory. Finite element simulations are used to characterize the track response as related to the UNL measurement system. The results of field tests using bondable resistance strain gages illustrate the system’s capability of approximating the actual rail bending stresses under load.
Resumo:
Nuclear magnetic resonance (NMR) is a tool used to probe the physical and chemical environments of specific atoms in molecules. This research explored small molecule analogues to biological materials to determine NMR parameters using ab initio computations, comparing the results with solid-state NMR measurements. Models, such as dimethyl phosphate (DMP) for oligonucleotides or CuCl for the active site of the protein azurin, represented computationally unwieldy macromolecules. 31P chemical shielding tensors were calculated for DMP as a function of torsion angles, as well as for the phosphate salts, ammonium dihydrogen phosphate (ADHP), diammonium hydrogen phosphate, and magnesium dihydrogen phosphate. The computational DMP work indicated a problem with the current standard 31P reference of 85% H3PO4(aq.). Comparison of the calculations and experimental spectra for the phosphate salts indicated ADHP might be a preferable alternative as a solid state NMR reference for 31P. Experimental work included magic angle spinning experiments on powder samples using the UNL chemistry department’s Bruker Avance 600 MHz NMR to collect data to determine chemical shielding anisotropies. For the quadrupolar nuclei of copper and scandium, the electric field gradient was calculated in diatomic univalent metal halides, allowing determination of the minimal level of theory necessary to compute NMR parameters for these nuclei.