896 resultados para Simulation Systems Analysis
Resumo:
This paper proposes a transmission and wheeling pricing method based on the monetary flow tracing along power flow paths: the monetary flow-monetary path method. Active and reactive power flows are converted into monetary flows by using nodal prices. The method introduces a uniform measurement for transmission service usages by active and reactive powers. Because monetary flows are related to the nodal prices, the impacts of generators and loads on operation constraints and the interactive impacts between active and reactive powers can be considered. Total transmission service cost is separated into more practical line-related costs and system-wide cost, and can be flexibly distributed between generators and loads. The method is able to reconcile transmission service cost fairly and to optimize transmission system operation and development. The case study on the IEEE 30 bus test system shows that the proposed pricing method is effective in creating economic signals towards the efficient use and operation of the transmission system. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Electricity market price forecast is a changeling yet very important task for electricity market managers and participants. Due to the complexity and uncertainties in the power grid, electricity prices are highly volatile and normally carry with spikes. which may be (ens or even hundreds of times higher than the normal price. Such electricity spikes are very difficult to be predicted. So far. most of the research on electricity price forecast is based on the normal range electricity prices. This paper proposes a data mining based electricity price forecast framework, which can predict the normal price as well as the price spikes. The normal price can be, predicted by a previously proposed wavelet and neural network based forecast model, while the spikes are forecasted based on a data mining approach. This paper focuses on the spike prediction and explores the reasons for price spikes based on the measurement of a proposed composite supply-demand balance index (SDI) and relative demand index (RDI). These indices are able to reflect the relationship among electricity demand, electricity supply and electricity reserve capacity. The proposed model is based on a mining database including market clearing price, trading hour. electricity), demand, electricity supply and reserve. Bayesian classification and similarity searching techniques are used to mine the database to find out the internal relationships between electricity price spikes and these proposed. The mining results are used to form the price spike forecast model. This proposed model is able to generate forecasted price spike, level of spike and associated forecast confidence level. The model is tested with the Queensland electricity market data with promising results. Crown Copyright (C) 2004 Published by Elsevier B.V. All rights reserved.
Resumo:
Conceptual modeling forms an important part of systems analysis. If this is done incorrectly or incompletely, there can be serious implications for the resultant system, specifically in terms of rework and useability. One approach to improving the conceptual modelling process is to evaluate how well the model represents reality. Emergence of the Bunge-Wand-Weber (BWW) ontological model introduced a platform to classify and compare the grammar of conceptual modelling languages. This work applies the BWW theory to a real world example in the health arena. The general practice computing group data model was developed using the Barker Entity Relationship Modelling technique. We describe an experiment, grounded in ontological theory, which evaluates how well the GPCG data model is understood by domain experts. The results show that with the exception of the use of entities to represent events, the raw model is better understood by domain experts
Resumo:
Market administrators hold the vital role of maintaining sufficient generation capacity in their respective electricity market. However without the jurisdiction to dictate the generator types, locations and timing of new generation, the reliability of the system may be compromised by delayed entry of new generation. This paper illustrates a new generation investment methodology that can effectively present expected returns from the pool market; while concurrently searching for the type and placement of a new generator to fulfil system reliability requirements.
Resumo:
In a deregulated electricity market, optimizing dispatch capacity and transmission capacity are among the core concerns of market operators. Many market operators have capitalized on linear programming (LP) based methods to perform market dispatch operation in order to explore the computational efficiency of LP. In this paper, the search capability of genetic algorithms (GAs) is utilized to solve the market dispatch problem. The GA model is able to solve pool based capacity dispatch, while optimizing the interconnector transmission capacity. Case studies and corresponding analyses are performed to demonstrate the efficiency of the GA model.