972 resultados para Serine carboxypeptidases
Resumo:
Although human T-cell lymphotropic virus type 2 (HTLV-2) is considered of low pathogenicity, serological diagnosis is important for counseling and monitoring. The confirmatory tests most used are Western blot (WB) and PCR. However, in high-risk populations, about 50% of the indeterminate WB were HTLV-2 positives by PCR. The insensitivity of the WB might be due to the use of recombinant proteins of strains that do not circulate in our country. Another possibility may be a high level of immunosuppression, which could lead to low production of virus, resulting in low stimulation of antibody. We found one mutation, proline to serine in the envelope region in the position 184, presented at least 1/3 of the samples, independent the indeterminate WB profile. In conclusion, we found no correlation of immune state, HTLV-2 proviral load, or env diversity in the K55 region and WB indeterminate results. We believe that the only WB kit available in the market is probably more accurate to detect HTLV-1 antibodies, and some improvement for HTLV-2 detection should be done in the future, especially among high-risk population. J. Med. Virol. 82:837-842,2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
As a consequence of selective pressure exerted by the immune response during hepatitis C virus (HCV) infection, a high rate of nucleotide mutations in the viral genome is observed which leads to the emergence of viral escape mutants. The aim of this study was to evaluate the evolution of the amino acid (aa) sequence of the HCV nonstructural protein 3 (NS3) in viral isolates after liver transplantation. Six patients with HCV-induced liver disease undergoing liver transplantation (LT) were followed up for sequence analysis. Hepatitis C recurrence was observed in all patients after LT. The rate of synonymous (dS) nucleotide substitutions was much higher than that of nonsynonymous (dN) ones in the NS3 encoding region. The high values of the dS/dN ratios suggest no sustained adaptive evolution selection pressure and, therefore, absence of specific NS3 viral populations. Clinical genotype assignments were supported by phylogenetic analysis. Serial samples from each patient showed lower mean nucleotide genetic distance when compared with samples of the same HCV genotype and subtype. The NS3 samples studied had an N-terminal aa sequence with several differences as compared with reference ones, mainly in genotype 1b-infected patients. After LT, as compared with the sequences before, a few reverted aa substitutions and several established aa substitutions were observed at the N-terminal of NS3. Sites described to be involved in important functions of NS3, notably those of the catalytic triad and zinc binding, remained unaltered in terms of aa sequence. Rare or frequent aa substitutions occurred indiscriminately in different positions. Several cytotoxic T lymphocyte epitopes described for HCV were present in our 1b samples. Nevertheless, the deduced secondary structure of the NS3 protease showed a few alterations in samples from genotype 3a patients, but none were seen in 1b cases. Our data, obtained from patients under important selective pressure during LT, show that the NS3 protease remains well conserved, mainly in HCV 3a patients. It reinforces its potential use as an antigenic candidate for further studies aiming at the development of a protective immune response.
Resumo:
Becari C, Teixeira FR, Oliveira EB, Salgado MC. Angiotensin-converting enzyme inhibition augments the expression of rat elastase- 2, an angiotensin II-forming enzyme. Am J Physiol Heart Circ Physiol 301: H565-H570, 2011. First published May 20, 2011; doi:10.1152/ajpheart.00534.2010.-Mounting evidence suggest that tissue levels of angiotensin (ANG) II are maintained in animals submitted to chronic angiotensin-converting enzyme (ACE) inhibitor treatment. We examined the expression levels of transcripts for elastase-2, a chymostatin-sensitive serine protease identified as the alternative pathway for ANG II generation from ANG I in the rat vascular tissue and the relative role of ACE-dependent and -independent pathways in generating ANG II in the rat isolated carotid artery rings of spontaneously hypertensive rats (SHR) and Wistar normotensive rats (WNR) treated with enalapril for 7 days. Enalapril treatment decreased blood pressure of SHR only and resulted in significantly more elastase-2 mRNA expression in carotid artery of both enalapril-treated WNR and SHR. Captopril induced a comparable rightward shift of concentration-response curves to ANG I in vehicle and enalapril-treated rats, although this effect was of lesser magnitude in SHR group. Chymostatin induced a rightward shift of the dose response to ANG I in vehicle-treated and a decrease in maximal effect of 22% in enalapril-treated WNR group. Maximal response induced by ANG I was remarkably reduced by chymostatin in enalapril-treated SHR carotid artery (by 80%) compared with controls (by 23%). Our data show that chronic ACE inhibition was associated with augmented functional role of non-ACE pathway in generating ANG II and increased elastase-2 gene expression, suggesting that this protease may contribute as an alternative pathway for ANG II generation when ACE is inhibited in the rat vascular tissue.
Resumo:
In the present study, the molecular karyotypes of 12 KP1(+) and KP1(-) Trypanosoma rangeli strains were determined and 10 different molecular markers were hybridized to the chromosomes of the parasite, including seven obtained from T. rangeli [ubiquitin hydrolase (UH), a predicted serine/threonine protein kinase (STK), hexose transporter, hypothetical protein, three anonymous sequences] and three from Trypanosoma cruzi [ubiquitin-conjugating enzyme E2 (UBE2), ribosomal RNA methyltransferase (rRNAmtr), proteasome non-ATPase regulatory subunit 6 (PSMD6)]. Despite intraspecific variation, analysis of the karyotype profiles permitted the division of the T rangeli strains into two groups coinciding with the KP1(+) and KP1(-) genotypes. Southern blot hybridization showed that, except for the hexose transporter probe, all other probes produced distinct patterns able to differentiate the KP1(+) and KP1(-) genotypes. The UH, STK and An-1A04 probes exclusively hybridized to the chromosomes of KP1(+) strains and can be used as markers of this group. In addition, the UBE2, rRNAmtr and PSMD6 markers, which are present in a conserved region in all trypanosomatid species sequenced so far, co-hybridized to the same T. rangeli chromosomal bands, suggesting the occurrence of gene synteny in these species. The finding of distinct molecular karyotypes in KP1(+) and KP1 (-) strains of T rangeli is noteworthy and might be used as a new approach to the study of genetic variability in this parasite. Together with the Southern blot hybridization results, these findings demonstrate that differences at the kDNA level might be associated with variations in nuclear DNA. (c) 2009 Elsevier BY. All rights reserved.
Resumo:
Nuclear actin and nuclear myosins have been implicated in the regulation of geneexpression in vertebrate cells. Myosin V is a class of actin-based motor proteins involved in cytoplasmic vesicle transport and anchorage, spindle-pole alignment and mRNA translocation. In this study, myosin-Va, phosphorylated on a conserved serine in the tail domain (phospho-ser(1650) MVa), was localized to subnuclear compartments. A monoclonal antibody, 9E6, raised against a peptide corresponding to phosphoserine(1650) and flanking regions of the murine myosin Va sequence, was immunoreactive to myosin Va heavy chain in cellular and nuclear extracts of HeLa cells, PC12 cells and B16-F10 melanocytes. Immunofluorescence microscopy with this antibody revealed discrete irregular spots within the nucleoplasm that colocalized with SC35, a splicing factor that earmarks nuclear speckles. Phospho-ser(1650) MVa was not detected in other nuclear compartments, such as condensed chromatin, Cajal bodies, gems and perinucleolar caps. Although nucleoli also were not labeled by 9E6 under normal conditions, inhibition of transcription in HeLa cells by actinomycin D caused the redistribution of phospho-ser(1650) MVa to nucleoli, as well as separating a fraction of phosphoser(1650) MVa from SC35 into near-neighboring particles. These observations indicate a novel role for myosin Va in nuclear compartmentalization and offer a new lead towards the understanding of actomyosin-based gene regulation.
Resumo:
Background: Hereditary angioedema is an autosomal dominant disease characterized by episodes of subcutaneous and submucosal edema. It is caused by deficiency of the C1 inhibitor protein, leading to elevated levels of bradykinin. More than 200 mutations in C1 inhibitor gene have been reported. The aim of this study was to analyze clinical features of a large family with an index case of hereditary angioedema and to determine the disease-causing mutation in this family. Methods: Family pedigree was constructed with 275 individuals distributed in five generations. One hundred and sixty-five subjects were interviewed and investigated for mutation at the C1 inhibitor gene. Subjects reporting a history of recurrent episodes of angioedema and/or abdominal pain attacks underwent evaluation for hereditary angioedema. Results: We have identified a novel mutation at the C1 inhibitor gene, c.351delC, which is a single-nucleotide deletion of a cytosine on exon 3, resulting in frameshift with premature stop codon. Sequencing analysis of the hypothetical truncated C1 inhibitor protein allowed us to conclude that, if transcription occurs, this protein has no biological activity. Twenty-eight members of the family fulfilled diagnostic criteria for hereditary angioedema and all of them presented the c.351delC mutation. Variation in clinical presentation and severity of disease was observed among these patients. One hundred and thirty-seven subjects without hereditary angioedema did not have the c.351delC mutation. Conclusion: The present study provides definitive evidence to link a novel genetic mutation to the development of hereditary angioedema in patients from a Brazilian family.
Resumo:
Rationale: The reduction of neutrophil migration to the bacterial focus is associated with poor outcome in sepsis. Objectives: The objective of this study was to identify soluble substances in the blood of septic mice that inhibit neutrophil migration. Methods: A pool of serum obtained from mice 2 hours after the induction of severe sepsis by cecal ligation and puncture inhibited the neutrophil migration. The proteins with inhibitory activity on neutrophil migration were isolated by Blue-Sepharose chromatography, high-performance liquid chromatography, and electrophoresis, and identified by mass spectrometry. Measurements and Main Results: Hemopexin was identified as the serum component responsible for the inhibition of neutrophil migration. In sepsis, the pretreatment of wild-type mice with hemopexin inhibited neutrophil migration to the focus of infection and decreased the survival rate from 87.5 to 50.0%. Hemopexin-null mice subjected to severe sepsis presented normal neutrophil migration, low bacteremia, and an improvement of 40% in survival rate. Moreover, hemopexin inhibited the neutrophil chemotaxis response evoked by C5a or macrophage inflammatory protein-2 and induced a reduction of CXCR2 and L-selectin as well as the up-regulation of CD11b expression in neutrophil membranes. The inhibitory effect of hemopexin on neutrophil chemotaxis was prevented by serine protease inhibitors or ATP. In addition, serum levels of ATP were decreased 2 hours after severe sepsis. Conclusions: These data demonstrate for the first time the inhibitory role of hemopexin in neutrophil migration during sepsis and suggest that the therapeutic inhibition of hemopexin or its protease activity could improve neutrophil migration to the focus of infection and survival in sepsis.
Resumo:
Sepsis is a systemic inflammatory condition following bacterial infection with a high mortality rate and limited therapeutic options(1,2). Here we show that interleukin-33 (IL-33) reduces mortality in mice with experimental sepsis from cecal ligation and puncture (CLP). IL-33-treated mice developed increased neutrophil influx into the peritoneal cavity and more efficient bacterial clearance than untreated mice. IL-33 reduced the systemic but not the local proinflammatory response, and it did not induce a T helper type 1 (T(H)1) to T(H)2 shift. The chemokine receptor CXCR2 is crucial for recruitment of neutrophils from the circulation to the site of infection(3). Activation of Toll-like receptors (TLRs) in neutrophils downregulates CXCR2 expression and impairs neutrophil migration(4). We show here that IL-33 prevents the downregulation of CXCR2 and inhibition of chemotaxis induced by the activation of TLR4 in mouse and human neutrophils. Furthermore, we show that IL-33 reverses the TLR4-induced reduction of CXCR2 expression in neutrophils via the inhibition of expression of G protein coupled receptor kinase-2 (GRK2), a serine-threonine protein kinase that induces internalization of chemokine receptors(5,6). Finally, we find that individuals who did not recover from sepsis had significantly more soluble ST2 (sST2, the decoy receptor of IL-33) than those who did recover. Together, our results indicate a previously undescribed mechanism of action of IL-33 and suggest a therapeutic potential of IL-33 in sepsis.
Resumo:
Trichophyton rubrum is the most common etiological agent of human dermatophytosis. Despite the incidence and medical importance of this dermatophyte, little is known about the mechanisms of host invasion and pathogenicity. Host invasion depends on the adaptive cellular responses of the pathogen that allow it to penetrate the skin layers, which are mainly composed of proteins and lipids. In this study, we used suppression subtractive hybridization to identify transcripts over-expressed in T rubrum cultured in lipid as carbon source. Among the subtractive cDNA clones isolated, 85 clones were positively screened by cDNA array dot blotting and were sequenced. The putative proteins encoded by the isolated transcripts showed similarities to fungal proteins involved in metabolism, signaling, defense, and virulence, such as the MDR/ABC transporter, glucan 1,3-beta-glucosidase, chitin synthase B, copper-sulfate-regulated protein, and serine/threonine phosphatase (calcineurin A). These results provide the first molecular insight into the genes differentially expressed during the adaptation of T. rubrum to a lipidic carbon source.
Resumo:
Endometriosis is a gynecologic disease characterized by the presence of endometrial tissue outside the uterine cavity. Although 15% of the female population in reproductive age is affected by endometriosis, its pathogenesis remains unclear. According to the most accepted pathogenesis hypothesis, endometrial fragments from the menstrual phase are transported through the uterine tubes to the peritoneal cavity, where they undergo implantation and growth, invading adjacent tissues. However, the establishment of the disease requires that endometrial cells present molecular characteristics favoring the onset and progression of ectopic implantation. In this investigation, we analyzed the differential gene expression profiles of peritoneal and ovarian endometriotic lesions compared to the endometrial tissue of nonaffected women using rapid subtraction hybridization (RaSH). In our study, this method was applied to samples of endometriotic lesions from affected women and to biopsies of endometrium of healthy women without endometriosis, where we could identify 126 deregulated genes. To evaluate the expression of genes found by RaSH method, we measured LOXL1, HTRA1, and SPARC genes by real-time polymerase chain reaction. Significant different expression was obtained for HTRA1 and LOXL1, upregulated in the ectopic endometrium, suggesting that these genes are involved in the physiopathology of endometriosis and may favor the viability of endometrial cells at ectopic sites.
Resumo:
The aim of this study was to evaluate the frequency of polymorphisms in the TYMS, XRCC1, and ERCC2 DNA repair genes in pediatric patients with acute lymphoblastic leukemia using polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism (RFLP) approaches. The study was conducted in 206 patients and 364 controls from a Brazilian population. No significant differences were observed among the analyzed groups regarding XRCC1 codon 399 and codon 194 and ERCC2 codon 751 and codon 312 polymorphisms. The TYMS 3R variant allele was significantly associated with a reduced risk of childhood ALL, represented by the sum of heterozygous and polymorphic homozygous genotypes (odds ratio 0.60; 95% confidence interval 0.37-0.99). The results suggest that polymorphism in TYMS may play a protective role against the development of childhood ALL.
Resumo:
Protein glycosylation represents one of the most important post-translational events, and is a mean of diversifying a protein without recourse to the genome. The venoms produced by snakes contain an abundance of glycoproteins with N-linked carbohydrates. N-linked glycosylation can ensure the correct folding of important functional domains. Characterization of carbohydrates structures aids in development of human therapeutics by snake venom toxins.
Resumo:
Platelet aggregation and acute inflammation are key processes in vertebrate defense to a skin injury. Recent studies uncovered the mediation of 2 serine proteases, cathepsin G and chymase, in both mechanisms. Working with a mouse model of acute inflammation, we revealed that an exogenous salivary protein of Ixodes ricinus, the vector of Lyme disease pathogens in Europe, extensively inhibits edema formation and influx of neutrophils in the inflamed tissue. We named this tick salivary gland secreted effector as I ricinus serpin-2 (IRS-2), and we show that it primarily inhibits cathepsin G and chymase, while in higher molar excess, it affects thrombin activity as well. The inhibitory specificity was explained using the crystal structure, determined at a resolution of 1.8 angstrom. Moreover, we disclosed the ability of IRS-2 to inhibit cathepsin G-induced and thrombin-induced platelet aggregation. For the first time, an ectoparasite protein is shown to exhibit such pharmacological effects and target specificity. The stringent specificity and biological activities of IRS-2 combined with the knowledge of its structure can be the basis for the development of future pharmaceutical applications. (Blood. 2011;117(2):736-744)
Resumo:
Previous studies have demonstrated that the pharmacological activities displayed by Bothrops jararaca venom undergo a significant ontogenetic shift. Variation in the venom proteome is a well-documented phenomenon; however, variation in the venom peptidome is poorly understood. We report a comparative proteomic and peptidomic analysis of venoms from newborn and adult specimens of B. jararaca and correlate it with the evaluation of important venom features. We demonstrate that newborn and adult venoms have similar hemorrhagic activities, while the adult venom has a slightly higher lethal activity in mice; however, the newborn venom is extremely more potent to kill chicks. The coagulant activity of newborn venom upon human plasma is 10 times higher than that of adult venom. These differences were clearly reflected in their different profiles of SDS-PAGE, gelatin zimography, immunostaining using specific antibodies, glycosylation pattern, and concanavalin A-binding proteins. Furthermore, we report for the first time the analysis of the peptide fraction of newborn and adult venoms by MALDI-TOF mass spectrometry and LC-MS/MS, which revealed different contents of peptides, while the bradykinin potentiating peptides (BPPs) showed rather similar profiles and were detected in the venoms showing their canonical sequences and also novel sequences corresponding to BPPs processed from their precursor protein at sites so far not described. As a result of these studies, we demonstrated that the ontogenetic shift in diet, from ectothermic prey in early life to endothermic prey in adulthood, and in animal size are associated with changes in the venom proteome in B. jararaca species.
Resumo:
The neotropical tick Amblyomma cajennense is a significant pest to domestic animals, the most frequently human-biting tick in South America and the main vector of Brazilian spotted fever (caused by Rickettsia rickettsii), a deadly human disease. The purpose of this study is to characterize the adult A. cajennense salivary gland transcriptome by expressed sequence tags (ESTs). We report the analysis of 1754 clones obtained from a cDNA library, which reveal mainly transcripts related to proteins involved in the hemostatic processes, especially proteases and their inhibitors. Remarkably, five types of possible serine protease inhibitors were found, including a molecule with a distinguished structure that contains repeats of the active motif of hirudin inhibitors. Besides, other components that may be active over the host immune system or acting as defensins against infecting microorganisms were also described, including a molecule similar to insect venom allergens. The conjunction of components from this transcriptome suggests a diverse strategy of A. cajennense tick during feeding, but emphasized in the coagulation system. (c) 2008 Published by Elsevier Ltd.