984 resultados para Saurischia - Anatomy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nail unit is the largest and a rather complex skin appendage. It is located on the dorsal aspect of the tips of fingers and toes and has important protective and sensory functions. Development begins in utero between weeks 7 and 8 and is fully formed at birth. For its correct development, a great number of signals are necessary. Anatomically, it consists of 4 epithelial components: the matrix that forms the nail plate; the nail bed that firmly attaches the plate to the distal phalanx; the hyponychium that forms a natural barrier at the physiological point of separation of the nail from the bed; and the eponychium that represents the undersurface of the proximal nail fold which is responsible for the formation of the cuticle. The connective tissue components of the matrix and nail bed dermis are located between the corresponding epithelia and the bone of the distal phalanx. Characteristics of the connective tissue include: a morphogenetic potency for the regeneration of their epithelia; the lateral and proximal nail folds form a distally open frame for the growing nail; and the tip of the digit has rich sensible and sensory innervation. The blood supply is provided by the paired volar and dorsal digital arteries. Veins and lymphatic vessels are less well defined. The microscopic anatomy varies from nail subregion to subregion. Several different biopsy techniques are available for the histopathological evaluation of nail alterations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El desarrollo de las técnicas de imágenes por resonancia magnética han permitido el estudio y cuantificación, in vivo, de los cambios que ocurren en la morfología cerebral ligados a procesos tales como el neurodesarrollo, el envejecimiento, el aprendizaje o la enfermedad. Un gran número de métodos de morfometría han sido desarrollados con el fin de extraer la información contenida en estas imágenes y traducirla en indicadores de forma o tamaño, tales como el volumen o el grosor cortical; marcadores que son posteriormente empleados para encontrar diferencias estadísticas entre poblaciones de sujetos o realizar correlaciones entre la morfología cerebral y, por ejemplo, la edad o la severidad de determinada enfermedad. A pesar de la amplia variedad de biomarcadores y metodologías de morfometría, muchos estudios sesgan sus hipótesis, y con ello los resultados experimentales, al empleo de un número reducido de biomarcadores o a al uso de una única metodología de procesamiento. Con el presente trabajo se pretende demostrar la importancia del empleo de diversos métodos de morfometría para lograr una mejor caracterización del proceso que se desea estudiar. En el mismo se emplea el análisis de forma para detectar diferencias, tanto globales como locales, en la morfología del tálamo entre pacientes adolescentes con episodios tempranos de psicosis y adolescentes sanos. Los resultados obtenidos demuestran que la diferencia de volumen talámico entre ambas poblaciones de sujetos, previamente descrita en la literatura, se debe a una reducción del volumen de la región anterior-mediodorsal y del núcleo pulvinar del tálamo de los pacientes respecto a los sujetos sanos. Además, se describe el desarrollo de un estudio longitudinal, en sujetos sanos, que emplea simultáneamente distintos biomarcadores para la caracterización y cuantificación de los cambios que ocurren en la morfología de la corteza cerebral durante la adolescencia. A través de este estudio se revela que el proceso de “alisado” que experimenta la corteza cerebral durante la adolescencia es consecuencia de una disminución de la profundidad, ligada a un incremento en el ancho, de los surcos corticales. Finalmente, esta metodología es aplicada, en un diseño transversal, para el estudio de las causas que provocan el decrecimiento tanto del grosor cortical como del índice de girificación en adolescentes con episodios tempranos de psicosis. ABSTRACT The ever evolving sophistication of magnetic resonance image techniques continue to provide new tools to characterize and quantify, in vivo, brain morphologic changes related to neurodevelopment, senescence, learning or disease. The majority of morphometric methods extract shape or size descriptors such as volume, surface area, and cortical thickness from the MRI image. These morphological measurements are commonly entered in statistical analytic approaches for testing between-group differences or for correlations between the morphological measurement and other variables such as age, sex, or disease severity. A wide variety of morphological biomarkers are reported in the literature. Despite this wide range of potentially useful biomarkers and available morphometric methods, the hypotheses and findings of the grand majority of morphological studies are biased because reports assess only one morphometric feature and usually use only one image processing method. Throughout this dissertation biomarkers and image processing strategies are combined to provide innovative and useful morphometric tools for examining brain changes during neurodevelopment. Specifically, a shape analysis technique allowing for a fine-grained assessment of regional thalamic volume in early-onset psychosis patients and healthy comparison subjects is implemented. Results show that disease-related reductions in global thalamic volume, as previously described by other authors, could be particularly driven by a deficit in the anterior-mediodorsal and pulvinar thalamic regions in patients relative to healthy subjects. Furthermore, in healthy adolescents different cortical features are extracted and combined and their interdependency is assessed over time. This study attempts to extend current knowledge of normal brain development, specifically the largely unexplored relationship between changes of distinct cortical morphological measurements during adolescence. This study demonstrates that cortical flattening, present during adolescence, is produced by a combination of age-related increase in sulcal width and decrease in sulcal depth. Finally, this methodology is applied to a cross-sectional study, investigating the mechanisms underlying the decrease in cortical thickness and gyrification observed in psychotic patients with a disease onset during adolescence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The appearance of large geolocated communication datasets has recently increased our understanding of how social networks relate to their physical space. However, many recurrently reported properties, such as the spatial clustering of network communities, have not yet been systematically tested at different scales. In this work we analyze the social network structure of over 25 million phone users from three countries at three different scales: country, provinces and cities. We consistently find that this last urban scenario presents significant differences to common knowledge about social networks. First, the emergence of a giant component in the network seems to be controlled by whether or not the network spans over the entire urban border, almost independently of the population or geographic extension of the city. Second, urban communities are much less geographically clustered than expected. These two findings shed new light on the widely-studied searchability in self-organized networks. By exhaustive simulation of decentralized search strategies we conclude that urban networks are searchable not through geographical proximity as their country-wide counterparts, but through an homophily-driven community structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dichotomy between two groups of workers on neuroelectrical activity is retarding progress. To study the interrelations between neuronal unit spike activity and compound field potentials of cell populations is both unfashionable and technically challenging. Neither of the mutual disparagements is justified: that spikes are to higher functions as the alphabet is to Shakespeare and that slow field potentials are irrelevant epiphenomena. Spikes are not the basis of the neural code but of multiple codes that coexist with nonspike codes. Field potentials are mainly information-rich signs of underlying processes, but sometimes they are also signals for neighboring cells, that is, they exert influence. This paper concerns opportunities for new research with many channels of wide-band (spike and slow wave) recording. A wealth of structure in time and three-dimensional space is different at each scale—micro-, meso-, and macroactivity. The depth of our ignorance is emphasized to underline the opportunities for uncovering new principles. We cannot currently estimate the relative importance of spikes and synaptic communication vs. extrasynaptic graded signals. In spite of a preponderance of literature on the former, we must consider the latter as probably important. We are in a primitive stage of looking at the time series of wide-band voltages in the compound, local field, potentials and of choosing descriptors that discriminate appropriately among brain loci, states (functions), stages (ontogeny, senescence), and taxa (evolution). This is not surprising, since the brains in higher species are surely the most complex systems known. They must be the greatest reservoir of new discoveries in nature. The complexity should not deter us, but a dose of humility can stimulate the flow of imaginative juices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of practice on the functional anatomy observed in two different tasks, a verbal and a motor task, are reviewed in this paper. In the first, people practiced a verbal production task, generating an appropriate verb in response to a visually presented noun. Both practiced and unpracticed conditions utilized common regions such as visual and motor cortex. However, there was a set of regions that was affected by practice. Practice produced a shift in activity from left frontal, anterior cingulate, and right cerebellar hemisphere to activity in Sylvian-insular cortex. Similar changes were also observed in the second task, a task in a very different domain, namely the tracing of a maze. Some areas were significantly more activated during initial unskilled performance (right premotor and parietal cortex and left cerebellar hemisphere); a different region (medial frontal cortex, “supplementary motor area”) showed greater activity during skilled performance conditions. Activations were also found in regions that most likely control movement execution irrespective of skill level (e.g., primary motor cortex was related to velocity of movement). One way of interpreting these results is in a “scaffolding-storage” framework. For unskilled, effortful performance, a scaffolding set of regions is used to cope with novel task demands. Following practice, a different set of regions is used, possibly representing storage of particular associations or capabilities that allow for skilled performance. The specific regions used for scaffolding and storage appear to be task dependent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reading and listening involve complex psychological processes that recruit many brain areas. The anatomy of processing English words has been studied by a variety of imaging methods. Although there is widespread agreement on the general anatomical areas involved in comprehending words, there are still disputes about the computations that go on in these areas. Examination of the time relations (circuitry) among these anatomical areas can aid in understanding their computations. In this paper, we concentrate on tasks that involve obtaining the meaning of a word in isolation or in relation to a sentence. Our current data support a finding in the literature that frontal semantic areas are active well before posterior areas. We use the subject’s attention to amplify relevant brain areas involved either in semantic classification or in judging the relation of the word to a sentence to test the hypothesis that frontal areas are concerned with lexical semantics and posterior areas are more involved in comprehension of propositions that involve several words.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mammalian immune system must specifically recognize and eliminate foreign invaders but refrain from damaging the host. This task is accomplished in part by the production of a large number of T lymphocytes, each bearing a different antigen receptor to match the enormous variety of antigens present in the microbial world. However, because antigen receptor diversity is generated by a random mechanism, the immune system must tolerate the function of T lymphocytes that by chance express a self-reactive antigen receptor. Therefore, during early development, T cells that are specific for antigens expressed in the thymus are physically deleted. The population of T cells that leaves the thymus and seeds the secondary lymphoid organs contains helpful cells that are specific for antigens from microbes but also potentially dangerous T cells that are specific for innocuous extrathymic self antigens. The outcome of an encounter by a peripheral T cell with these two types of antigens is to a great extent determined by the inability of naive T cells to enter nonlymphoid tissues or to be productively activated in the absence of inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relative cerebral glucose metabolism was examined with positron-emission tomography (PET) as a measure of neuronal activation during performance of the classically conditioned eyeblink response in 12 young adult subjects. Each subject received three sessions: (i) a control session with PET scan in which unpaired presentations of the tone conditioned stimulus and corneal airpuff unconditioned stimulus were administered, (ii) a paired training session to allow associative learning to occur, and (iii) a paired test session with PET scan. Brain regions exhibiting learning-related activation were identified as those areas that showed significant differences in glucose metabolism between the unpaired control condition and well-trained state in the 9 subjects who met the learning criterion. Areas showing significant activation included bilateral sites in the inferior cerebellar cortex/deep nuclei, anterior cerebellar vermis, contralateral cerebellar cortex and pontine tegmentum, ipsilateral inferior thalamus/red nucleus, ipsilateral hippocampal formation, ipsilateral lateral temporal cortex, and bilateral ventral striatum. Among all subjects, including those who did not meet the learning criterion, metabolic changes in ipsilateral cerebellar nuclei, bilateral cerebellar cortex, anterior vermis, contralateral pontine tegmentum, ipsilateral hippocampal formation, and bilateral striatum correlated with degree of learning. The localization to cerebellum and its associated brainstem circuitry is consistent with neurobiological studies in the rabbit model of eyeblink classical conditioning and neuropsychological studies in brain-damaged humans. In addition, these data support a role for the hippocampus in conditioning and suggest that the ventral striatum may also be involved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contains notes taken by Harvard student Lyman Spalding (1775-1821) from lectures on anatomy and surgery delivered by Harvard Professor John Warren (1753-1815) in 1795, as well a section entitled “Medical Observations,” which includes entries on “Vernal Debility,” or diseases occurring in the spring, and lung function. It is unclear if these are Spalding’s own writings or transcriptions from a published work. There is also text transcribed from “Elementa Medicinae,” published in 1780 by Scottish physician John Brown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Volume containing notes on the lectures of Henry Cline (1750-1827), a surgeon at St. Thomas's Hospital, London, England, that were kept by American medical student John Collins Warren in 1799 and 1800. The lectures were on topics including blood, blood vessels, absorbents, cellular membranes, and the nerves. There are annotations in pencil in an unknown hand throughout the volume.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Crimean operation has served as an occasion for Russia to demonstrate to the entire world the capabilities and the potential of information warfare. Its goal is to use difficult to detect methods to subordinate the elites and societies in other countries by making use of various kinds of secret and overt channels (secret services, diplomacy and the media), psychological impact, and ideological and political sabotage. Russian politicians and journalists have argued that information battles are necessary for “the Russian/Eurasian civilisation” to counteract “informational aggression from the Atlantic civilisation led by the USA”. This argument from the arsenal of applied geopolitics has been used for years. This text is an attempt to provide an interpretation of information warfare with the background of Russian geopolitical theory and practice.