911 resultados para SMART cDNA
Resumo:
We have demonstrated a smart polymeric transducer and aptamer/intercalating dye system that allows the label-free detection of protein with high sensitivity and selectivity.
Resumo:
A smart biodegradable cationic polymer (CBA-PEI) based on the disulfide bond-containing cross-linker cystamine bisacrylamide (CBA) and low molecular weight branched polyethylenimine (1800-Da, PEI1800) was successfully synthesized by Michael addition reaction in our recent study. Furthermore, a series of copolymers (CBA-PEI-PEG) with different PEGylation degree were obtained by the mPEG-SPA (5000-Da) reacting with CBA-PEI at various weight ratios directly. The molecular structures of the resulting polymers CBA-PEI and CBA-PEI-PEG were evaluated by nuclear magnetic resonance spectroscopy (H-1-NMR) and capillary viscosity measurements, all of which had successfully verified formation of the copolymers. The polymer/DNA complexes based on CBA-PEI and CBA-PEI-PEG were measured by dynamic light scattering and gel retardation assay. The results showed that the particle size and zeta potential of complexes were reduced with increasing amount of PEG grafting, even no particle formation. The particle size of CBA-PEI/DNA complexes was in range of 103.1 to 129.1 nm, and the zeta potential was in range of 14.2 to 24.3 mV above the 2:1 weight ratio. In the same measure condition, the particle size of CBA-PEI-PEG complexes was reduced to a range of 32.2 to 55 nm, and the zeta potential was in range of 9.3 to 13.8 mV at the 2:1 weight ratio.
Resumo:
Peroxinectin, a cell-adhesive hemoperoxidase that binds superoxide dismutase and mediates blood cells adhesion and migration in invertebrate, is believed to play an important role in cellular immune reaction. In this study, we reported a new peroxinectin gene homologue from Chinese shrimp Fenneropenaeus chinensis. Based on expressed sequence tags (ESTs) of haemocyte cDNA library, we cloned a 2,611 bps full-length cDNA of peroxinectin gene homologue encoded 801 amino acids. Motif scanning of the predicted polypeptide revealed a peroxidase domain and an integrin binding motif (Lys-Gly-Asp, KGD). Peroxinectin gene expressed constitutively in haemocyte as determined by quantitative real-time RT-PCR, the expression level varied following bacterial challenge. These findings suggested that peroxinectin expression is susceptible to exterior stimulus and maintains at a high expression level during bacterial infection.
Resumo:
Clip domain serine protease (cSP), characterized by conserved clip domains, is a new serine protease family identified mainly in arthropod, and plays important roles in development and immunity. In the present study, the full-length cDNA of a cSP (designated EscSP) was cloned from Chinese mitten crab Eriocheir sinensis by expressed sequence tags (ESTs) and PCR techniques. The 1380 bp EscSP cDNA contained a 1152 bp open reading frame (ORF) encoding a putative cSP of 383 amino acids, a 5'-untranslated region (UTR) of 54 bp, and a 3'-UTR of 174 bp. Multiple sequence alignment presented twelve conserved cysteine residues and a canonical catalytic triad (His(185), Asp(235) and Ser(332)) critical for the fundamental structure and function of EscSP. Two types of cSP domains, the clip domain and tryp_spc domain, were identified in the deduced amino acids sequence of EscSP. The conservation characteristics and similarities with previously known cSPs indicated that EscSP was a member of the large cSP family. The mRNA expression of EscSP in different tissues and the temporal expression in haemocytes challenged by Listonella anguillarum were measured by real-time RT-PCR. EscSP mRNA transcripts could be detected in all examined tissues, and were higher expressed in muscle than that in hepatopancreas. gill, gonad, haemocytes and heart. The EscSP mRNA expression in haemocytes was up-regulated after L anguillarum challenge and peaked at 2 h (4.96 fold, P < 0.05) and 12 h (9.90 fold, P < 0.05). Its expression pattern was similar to prophenoloxidase (EsproPO), one of the components of crab proPO system found in our previous report. These results implied that EscSP was involved in the processes of host-pathogen interaction probably as one of the proPO system members. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Chinese mitten crab Eriocheir sinensis is one of the most important aquaculture crustacean species in China. A cDNA library was constructed from hemocytes of E. sinensis challenged with the mixture of Listonella anguillarum and Staphylococcus aureus, and randomly sequenced to collect genomic information and identify genes involved in immune defense response. Single-pass 5' sequencing of 10368 clones yielded 7535 high quality ESTs (Expressed Sequence Tags) and these ESTs were assembled into 2943 unigenes. BLAST analysis revealed that 1706 unigenes (58.0% of the total) or 4593 ESTs (61.0% of the total) were novel genes that had no significant matches to any protein sequences in the public databases. The rest 1237 unigenes; (42.0% of the total) were closely matched to the known genes or sequences deposited in public databases, which could be classed into 20 or 23 classifications according to "molecular function" or "biological process" respectively based on the Gene Ontology (GO). And 221 unigenes (7.5% of all 2943 unigenes, 17.9% of matched unigenes) or 969 ESTs (12.9% of all 7535 ESTs, 32.9% of matched ESTs) were identified to be immune genes. The relative higher proportion of immune-related genes in the present cDNA library than that in the normal library of E. sinensis and other crustaceans libraries, and the differences and changes in percentage and quantity of some key immune-related genes especially the immune inducible genes between two E. sinensis cDNA libraries may derive from the bacteria challenge to the Chinese mitten crab. The results provided a well-characterized EST resource for the genomics community, gene discovery especially for the identification of host-defense genes and pathways in crabs as well as other crustaceans. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The prophenoloxidase(ProPO) gene was cloned from haemocytes of Chinese shrimp Fenneropenaeus chinensis by Rapid Amplification Complementary DNA Ends (RACE) method. The full-length cDNA of prophenoloxidase gene consists of 3040 bp with a 2061 bp Open Reading Frame (ORF), encoding 686 amino acids. Phylogenetic analysis revealed that it belongs to insect-type invertebrate prophenoloxidase gene family. To understand ProPO reaction for pathogeny's challenge in shrimp, the expressions of ProPO in different tissues were studied by real-time PCR after challenged by Vibrio anguillarum. The results showed that the expression level of ProPO gene in haemocytes was highest among three studied tissues including haemocytes, lymphoid organ and hepatopancreas. The time-course change of ProPO mRNA levels in challenge experiment showed that ProPO mRNA transcripts had the biggest change extent in lymphoid organ.
Resumo:
A homologue of the lower vertebrates translationally controlled tumor protein (TCTP) was cloned from the marine fish Japanese sea perch (Lateolabrax japonicus) by the technology of homology cloning. The full-length cDNA sequence of the sea perch TCTP gene contained a 5' untranslated region (UTR) of 47 bp, a 3' UTR of 433 bp, and a putative open reading frame (ORF) of 510 bp encoding a polypeptide of 170 amino acids. The deduced amino acid sequence of the sea perch TCTP gene showed a high similarity to that of zebrafish, rohu, rabbit, chicken and human. Sequence analysis revealed there were a signature sequence of TCTP family, an N-glycosylation site, and five Casein kinase phosphorylation sites in the sea perch TCTP. The temporal expression of TCTP genes in healthy and lipopolysaccharide (LPS) challenged fishes was measured by semi-quantitative reverse transcription-PCR (RT-PCR). The results indicated that LPS could up-regulate the expression of sea perch TCTP in the examined tissues, including head-kidney, spleen and liver.
Resumo:
The cDNA encoding hsc70 of Chinese shrimp Fenneropenaeus chinensis was cloned from hepatopancreas by RT-PCR based on its EST sequence. The full length cDNA of 2090 bp contained an open reading frame of 1956 nucleotides and partial 5'- and 3'-untranslated region(5'- and 3'-UTR). PCR amplification and sequencing analysis showed the existence of introns in the region of 1-547 bp, but they did not exist in the region of 548-2090 bp of hsc70 cDNA. When the deduced 652 amino acid sequence of HSC70 was compared with the members of HSP70 family from other organisms, the results showed 85.9% similarity with HSC71 from Oncorhynchus mykiss and HSC70 from Homo sapiens. It also exhibited 85.8% similarity with HSP70 from Mus musculu and 85.4% with HSC70 from Manduca sexta. Expression analysis showed that hsc70 mRNA was espressed constitutively in hepatopancreas, muscle, eyestalks, haemocytes, heart, ovary, intestine and gills in Fenneropenaeus chinensis. No difference could be detected on hsc70 mRNA level in muscle between heat-shocked and control animals.
Resumo:
Lipopolysaccharide and beta-1,3-glucan-binding protein (LGBP) play a crucial role in the innate immune response of invertebrates as a pattern recognition protein (PRP). The scallop LGBP gene was obtained from Chlamys farreri challenged by Vibrio anguillarum by randomly sequencing cDNA clones from a whole body cDNA library, and by fully sequencing a clone with homology to known LGBP genes. The scallop LGBP consisted of 1876 nucleotides with a canonical polyadenylation signal sequence AATAAA and a poly(A) tail, encoding a polypeptide of 440 amino acids with the estimated molecular mass of 47.16 kDa and a predicted isoelectric point of 5.095. The deduced amino acid sequence showed a high similarity to that of invertebrate recognition proteins from blue shrimp, black tiger shrimp, mosquito, freshwater crayfish, earthworms, and sea urchins, with conserved features including a potential polysaccharide-binding motif, a glucanase motif, and N-glycosylation sites. The temporal expression of LGBP genes in healthy and V. anguillarum-challenged C farreri scallop, measured by real-time semiquantitative reverse transcription polymerase chain reaction (PCR), showed that expression was up-regulated initially, followed by recovery as the stimulation cleared. Results indicated that scallop LGBP was a constitutive and inducible acute-phase protein that could play a critical role in scallop-pathogen interaction. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A fragment of TNFalpha cDNA sequence from red seabream was cloned by homology cloning approach with two degenerated primers which were designed based on the conserved regions of other animals' TNF sequences. The sequence was elongated by 3' and 5' RACE to get the full length CDS sequence. This sequence contained 1264 nucleotides that included a 5' UTR of 85 bp, a 3' UTR of 514 bp and an open reading frame (ORF) of 666 bp which could encode 222 amino acids propeptide. In 3' UTR, there were several mRNA instability motifs and three endotoxin-responsive sequences, but the sequence lacked the polyadenylation signal. The deduced peptide had a clear transmembrane domain, a TNFalpha family signature and a TNF2 family profile. The cell attachment sequence and the glycosaminoglycan attachment sites were also found in the sequence. The red seabream TNF sequence shared relatively high similarity with both mammalian TNFalpha and TNFbeta by multiple sequence alignments. Phylogenetic analysis showed that the piscine TNFalpha were located independently in a different branch compared with mammalian TNFalpha and TNFbeta. Based on the primary and secondary structure analysis and gene expression study, we could concluded that the red seabream TNF should be a TNFalpha, not TNFbeta. RT-PCR was used to study TNFa transcript expression. 24 h after the red seabream was challenged by Vibrio anguillarum, the RS TNFalpha transcript expression were detected in blood, brain, gill, heart, head kidney, kidney, Ever, muscle and spleen. Results showed that TNFalpha mRNA was constitutively expressed in parts of the tissues both in stimulated and unstimulated fish and the expression could be enhanced after the pathogen infection.
Resumo:
Crustacean haemocytes play important roles in the host immune response including recognition, phagocytosis, melanization, cytotoxicity and inter-cellular signal communication. Expressed sequence tags (ESTs) analysis is proved to be an efficient approach not only for gene discovery, but also for gene expression profiles performance. In order to further understand the innate immune system and defense mechanisms of Chinese shrimp at molecular level, complementary DNA library is constructed from the haemocyte tissue of Fenneropenaeus chinensis. A total of 2371 cDNA clones are successfully sequenced and the average sequence length is 460 bp. About 50% are identified as orthologs of known genes from other organisms by BLASTx and BLASTn program. By sequences comparability and analysis, 34 important genes including 177 ESTs are identified that may be involved in defense or immune functions in shrimp based on the known knowledge. These genes are categorized into five categories according to their putative functions in shrimp immune system: 13 genes are different types of antimicrobial peptides (AMP, penaeidin, antilipopolysaccharide factor, etc.), and their proportion is about 3 8%; 11 genes belong to prophenoloxidase system (prophenoloxidase, serine proteinase, serine proteinase inhibitor, etc.), and their proportion is about 32%; five genes have high homology with clotting protein (lectin, transglutaminase, etc), and their proportion is about 15%; three genes may be involved in inter-cell signal communication (peroxinectin, integrin), and their proportion is about 9%; two genes have been identified to be chaperone proteins (Hsc70, thioredoxin peroxidase), and their proportion is about 6%. These EST sequences enrich our understanding of the immune genes of F chinensis and will help farther experimental research into immune factors and improve our knowledge of the immune mechanisms of shrimp. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The pacifastin family, characterized by several conserved arrays of six cysteine residues, is a newly identified serine protease inhibitor (SPI) family discovered uniquely in arthropods and plays important roles in multiple biological processes. In the present study, the full-length cDNA of a pacifastin light chain (designated ESPLC) was cloned from the Chinese mitten crab Eriocheir sinensis by expressed sequence tags (ESTs) and PCR techniques. The 1036 bp ESPLC cDNA contained an 831 bp open reading frame (ORF) encoding a putative pacifastin-related peptide of 276 amino acids, a 5'-untranslated region (UTR) of 67 bp, and a 3'-UTR of 138 bp. Six putative conserved domains sharing a characteristic cysteine array (Cys-Xaa(9-12)-Cys-Asn-Xaa-Cys-Xaa-Cys-Xaa(2-3)-Gly-Xaa(3-4)-Cys-Thr-Xaa(3)-Cys) were identified in the deduced amino acid sequence of ESPLC. The conservation of these PLDs (pacifastin light chain domains) and the relative higher similarity of ESPLC to other pacifastin-related precursors suggested that ESPLC was a member of pacifastin family. The mRNA transcripts of ESPLC were found to be higher expressed in hepatopancreas, gill and haemolymph than in gonad, muscle and heart, with the highest expression level in hepatopancreas. The ESPLC mRNA expression in haemolymph of Chinese mitten crab was up-regulated at 2 h and 12 h after challenged with Listonella anguillarum. The tissue distribution and temporal characteristics of ESPLC mRNA expression, similar to that of prophenoloxidase gene in E. sinensis, suggested that ESPLC was potentially involved in the response against invading bacteria, with the possibility that it functioned in the prophenoloxidase system in E sinensis. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Heat shock protein 90 (HSP90) is a highly conserved molecular chaperone contributing to the folding, maintenance of structural integrity and proper regulation of a subset of cytosolic proteins. The full-length cDNA of Zhikong scallop Chlamysfarreri HSP90 (designated CfHSP90) was cloned by EST and rapid RACE techniques. It was of 2710 bp, including an open reading frame (ORF) of 2181 bp encoding a polypeptide of 726 amino acids with all the five HSP90 family signatures. BLAST analysis revealed that the CfHSP90 gene shared high similarity with other known HSP90 genes. Fluorescent real-time quantitative RT-PCR was used to examine the expression pattern of CfHSP90 mRNA in haemocytes of scallops exposed to Cd2+, Pb2+ and Cu2+ for 10 and 20 days, respectively. All the three heavy metals could induce CfHSP90 expression. There was a clear dose-dependent expression pattern of CfHSP90 after heavy metals exposure for 10 days or 20 days. Different concentrations of the same metal resulted in different effects on CfHSP90 expression. The results indicated that CfHSP90 responded to various heavy metal stresses with a dose-dependent expression pattern as well as exposure time effect, and could be used as a molecular biomarker in a heavy metal polluted environment. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Transglutaminase can catalyze the cross-linking reaction between soluble clotting protein molecules from the plasma for prevention of excess blood loss from a wound and obstructing micro-organisms from invading the wound in crustaceans. A novel transglutaminase (FcTG) gene was cloned from hemocytes of Chinese shrimp Fenneropenaeus chinensis by 3' and 5' rapid amplification of cDNA ends (RACE) PCR. The full-length cDNA consists of 2972 bp, encoding 757 amino acids with a calculated molecular mass of 84.96 kDa and a theoretical isoelectric point of 5.61. FcTG contains a typical transglutaminase-like homologue (TGc domain: E-value = 1.94e-38). Three catalytic sites (Cys-324, His-391 and Asp-414) are present in this domain. The deduced amino acid sequence of FcTG showed high identity with black tiger shrimp TG, kuruma shrimp TG and crayfish TG. Transcripts of FcTG mRNA were mainly detected in gill, lymphoid organ and hemocytes by RT-PCR. RNA in situ hybridization further confirmed that FcTG was constitutively expressed in hemocytes both in the circulatory system and lymphoid organ. The variation of mRNA transcription level in hemocytes and lymphoid organ following injection of killed bacteria or infection with white spot syndrome virus (WSSV) was quantified by RT-PCR. The up-regulated expression of FcTG in shrimp lymphoid organ following injection of bacteria indicates that it is inducible and might be associated with bacterial challenge. (c) 2006 Elsevier Ltd. All rights reserved.