267 resultados para SKELETONS
Resumo:
Here we show the use of the 210Pb-226Ra excess method to determine the growth rate of corals from one of the world's largest known cold-water coral reef, the Røst Reef off Norway. Two large branching framework-forming cold-water coral specimens, one Lophelia pertusa and one Madrepora oculata were collected alive at 350 m water depth from the Røst Reef at ~67° N and ~9° E. Pb and Ra isotopes were measured along the major growth axis of both specimens using low level alpha and gamma spectrometry and the corals trace element compositions were studied using ICP-QMS. Due to the different chemical behaviors of Pb and Ra in the marine environment, 210Pb and 226Ra were not incorporated the same way into the aragonite skeleton of those two cold-water corals. Thus to assess of the growth rates of both specimens we have here taken in consideration the exponential decrease of initially incorporated 210Pb as well as the ingrowth of 210Pb from the decay of 226Ra. Moreover a~post-depositional 210Pb incorporation is found in relation to the Mn-Fe coatings that could not be entirely removed from the oldest parts of the skeletons. The 226Ra activities in both corals were fairly constant, then assuming constant uptake of 210Pb through time the 210Pb-226Ra chronology can be applied to calculate linear growth rate. The 45.5 cm long branch of M. oculata reveals an age of 31 yr and a~linear growth rate of 14.4 ± 1.1 mm yr-1, i.e. 2.6 polyps per year. However, a correction regarding a remaining post-depositional Mn-Fe oxide coating is needed for the base of the specimen. The corrected age tend to confirm the radiocarbon derived basal age of 40 yr (using 14C bomb peak) with a mean growth rate of 2 polyps yr-1. This rate is similar to the one obtained in Aquaria experiments under optimal growth conditions. For the 80 cm-long specimen of L. pertusa a remaining contamination of metal-oxides is observed for the middle and basal part of the coral skeleton, inhibiting similar accurate age and growth rate estimates. However, the youngest branch was free of Mn enrichment and this 15 cm section reveals a growth rate of 8 mm yr-1 (~1 polyp every two to three years). However, the 210Pb growth rate estimate is within the lowermost ranges of previous growth rate estimates and may thus reflect that the coral was not developing at optimal growth conditions. Overall, 210Pb-226Ra dating can be successfully applied to determine the age and growth rate of framework-forming cold-water corals, however, removal of post-depositional Mn-Fe oxide deposits is a prerequisite. If successful, large branching M. oculata and L. pertusa coral skeletons provide unique oceanographic archive for studies of intermediate water environmentals with an up to annual time resolution and spanning over many decades.
Resumo:
The southeastern coast of South Australia contains a spectacular and world-renown suite of Quaternary calcareous aeolianites. This study is focused on the provenance of components in the Holocene sector of this carbonate breach-dune succession. Research was carried out along seven transects from ~30 meters water depth offshore across the beach and into the dunes. Offshore sediments were acquired via grab sampling and SCUBA. Results indicate that dunes of the southern Lacepede and Otway coasts in particular are mostly composed of modern invertebrate and calcareous algal allochems. The most numerous grains are from molluscs, benthic foraminifera, coralline algae, echinoids, and bryozoans. These particles originate in carbonate factories such as macroalgal forests, rocky reefs, seagrass meadows, and low-relief seafloor rockgrounds. The incorporation of carbonate skeletons into coastal dunes, however, depends on a combination of; 1) the infauna within intertidal and nearshore environments, 2) the physical characteristics of different allochems and their ability to withstand fragmentation and abrasion, 3) the wave and swell climate, and 4) the nature of aeolian transport. Most aeolian dune sediment is derived from nearshore and intertidal carbonate factories. This is particularly well illustrated by the abundance of robust infaunal bivalves that inhabit the nearshore sands and virtual absence of bryozoans that are common as sediment particles in water depths > 10mwd. Thus, the calcareous aeolianites in this cool-water carbonate region are not a reflection of the offshore marine shelf factories, but more a product of shallow nearshore-intertidal biomes.
Resumo:
Coralline algae are globally distributed benthic primary producers that secrete calcium carbonate skeletons. In the context of ocean acidification, they have received much recent attention due to the potential vulnerability of their high-Mg calcite skeletons and their many important ecological roles. Herein, we summarize what is known about coralline algal ecology and physiology, providing context to understand their responses to global climate change. We review the impacts of these changes, including ocean acidification, rising temperatures, and pollution, on coralline algal growth and calcification. We also assess the ongoing use of coralline algae as marine climate proxies via calibration of skeletal morphology and geochemistry to environmental conditions. Finally, we indicate critical gaps in our understanding of coralline algal calcification and physiology and highlight key areas for future research. These include analytical areas that recently have become more accessible, such as resolving phylogenetic relationships at all taxonomic ranks, elucidating the genes regulating algal photosynthesis and calcification, and calibrating skeletal geochemical metrics, as well as research directions that are broadly applicable to global change ecology, such as the importance of community-scale and long-term experiments in stress response.
Resumo:
Coralline algae are globally distributed benthic primary producers that secrete calcium carbonate skeletons. In the context of ocean acidification, they have received much recent attention due to the potential vulnerability of their high-Mg calcite skeletons and their many important ecological roles. Herein, we summarize what is known about coralline algal ecology and physiology, providing context to understand their responses to global climate change. We review the impacts of these changes, including ocean acidification, rising temperatures, and pollution, on coralline algal growth and calcification. We also assess the ongoing use of coralline algae as marine climate proxies via calibration of skeletal morphology and geochemistry to environmental conditions. Finally, we indicate critical gaps in our understanding of coralline algal calcification and physiology and highlight key areas for future research. These include analytical areas that recently have become more accessible, such as resolving phylogenetic relationships at all taxonomic ranks, elucidating the genes regulating algal photosynthesis and calcification, and calibrating skeletal geochemical metrics, as well as research directions that are broadly applicable to global change ecology, such as the importance of community-scale and long-term experiments in stress response.
Resumo:
The detailed, rich and diverse Argaric funerary record offers an opportunity to explore social dimensions that usually remain elusive for prehistoric research, such us social rules on kinship rights and obligations, sexual tolerance and the role of funerary practices in preserving the economic and political organization. This paper addresses these topics through an analysis of the social meaning of Argaric double tombs by looking at body treatment and composition of grave goods assemblages according to gender and class affiliation. The Argaric seems to have been a conservative society, scarcely tolerant regarding homosexuality, and willing to celebrate ancestry associated to certain places as a means of asserting residence and property rights.
Resumo:
The dodo Raphus cucullatus Linnaeus, 1758, an extinct and flightless, giant pigeon endemic to Mauritius, has fascinated people since its discovery, yet has remained surprisingly poorly known. Until the mid-19th century, almost all that was known about the dodo was based on illustrations and written accounts by 17th century mariners, often of questionable accuracy. Furthermore, only a few fragmentary remains of dodos collected prior to the bird’s extinction exist. Our understanding of the dodo’s anatomy was substantially enhanced by the discovery in 1865 of subfossil bones in a marsh called the Mare aux Songes, situated in southeastern Mauritius. However, no contextual information was recorded during early excavation efforts, and the majority of excavated material comprised larger dodo bones, almost all of which were unassociated. Here we present a modern interdisciplinary analysis of the Mare aux Songes, a 4200-year-old multitaxic vertebrate concentration Lagerst€atte. Our analysis of the deposits at this site provides the first detailed overview of the ecosystem inhabited by the dodo. The interplay of climatic and geological conditions led to the exceptional preservation of the animal and associated plant remains at the Mare aux Songes and provides a window into the past ecosystem of Mauritius. This interdisciplinary research approach provides an ecological framework for the dodo, complementing insights on its anatomy derived from the only associated dodo skeletons known, both of which were collected by Etienne Thirioux and are the primary subject of this memoir.
Resumo:
Structured parallel programming, and in particular programming models using the algorithmic skeleton or parallel design pattern concepts, are increasingly considered to be the only viable means of supporting effective development of scalable and efficient parallel programs. Structured parallel programming models have been assessed in a number of works in the context of performance. In this paper we consider how the use of structured parallel programming models allows knowledge of the parallel patterns present to be harnessed to address both performance and energy consumption. We consider different features of structured parallel programming that may be leveraged to impact the performance/energy trade-off and we discuss a preliminary set of experiments validating our claims.
Resumo:
In this paper we advocate the Loop-of-stencil-reduce pattern as a way to simplify the parallel programming of heterogeneous platforms (multicore+GPUs). Loop-of-Stencil-reduce is general enough to subsume map, reduce, map-reduce, stencil, stencil-reduce, and, crucially, their usage in a loop. It transparently targets (by using OpenCL) combinations of CPU cores and GPUs, and it makes it possible to simplify the deployment of a single stencil computation kernel on different GPUs. The paper discusses the implementation of Loop-of-stencil-reduce within the FastFlow parallel framework, considering a simple iterative data-parallel application as running example (Game of Life) and a highly effective parallel filter for visual data restoration to assess performance. Thanks to the high-level design of the Loop-of-stencil-reduce, it was possible to run the filter seamlessly on a multicore machine, on multi-GPUs, and on both.
Resumo:
Rising anthropogenic CO2 in the atmosphere is accompanied by an increase in oceanic CO2 and a concomitant decline in seawater pH (ref. 1). This phenomenon, known as ocean acidification (OA), has been experimentally shown to impact the biology and ecology of numerous animals and plants2, most notably those that precipitate calcium carbonate skeletons, such as reef-building corals3. Volcanically acidified water at Maug, Commonwealth of the Northern Mariana Islands (CNMI) is equivalent to near-future predictions for what coral reef ecosystems will experience worldwide due to OA. We provide the first chemical and ecological assessment of this unique site and show that acidification-related stress significantly influences the abundance and diversity of coral reef taxa, leading to the often-predicted shift from a coral to an algae-dominated state4, 5. This study provides field evidence that acidification can lead to macroalgae dominance on reefs.
Resumo:
O presente trabalho envolveu a produção de membranas compósitas para separação de CO2 a altas temperaturas. Os compósitos habituais são constituídos por duas fases, uma cerâmica, de céria dopada com gadolínio (Ce0.9Gd0.1O0.95 - CGO) condutora de iões óxido, que funciona como suporte da segunda fase composta por uma mistura eutética de carbonatos alcalinos (Li2CO3 e Na2CO3), que assegura o transporte de iões carbonato. O objetivo do trabalho prende-se com o estudo do transporte de iões através destes compósitos, por forma a perceber se os sais destes compósitos apresentam condução iónica singular ou condução mista. Neste sentido a resposta a esta questão teve por base a realização de ensaios de eficiência faradaica com recurso a amostras compósitas envolvendo matrizes de CGO (condutor de iões óxido) e de aluminato de lítio (não condutor de iões óxido). A preparação tanto de esqueletos porosos como de compósitos foi realizada tendo por base métodos e precursores semelhantes aos usados na literatura. Primeiramente efetuou-se o processamento dos esqueletos porosos para posteriormente impregnação com mistura eutética de carbonatos. Obtidos os compósitos estes foram caraterizados por microscopia de impedância e por microscopia eletrónica de varrimento de forma a serem submetidos mais tarde aos ensaios de eficiência faradaica. Os resultados de eficiência faradaica revelaram que na realidade existem processos de condução mista cuja importância depende das condições de operação da membrana.
Resumo:
Ambipolar organic field-effect transistors (OFETs), which can efficiently transport both holes and electrons, using a single type of electrode, are currently of great interest due to their possible applications in complementary metal oxide semiconductor (CMOS)-like circuits, sensors, and in light-emitting transistors. Several theoretical and experimental studies have argued that most organic semiconductors should be able to transport both types of carrier, although typically unipolar behavior is observed. One factor that can compromise ambipolar transport in organic semiconductors is poor solid state overlap between the HOMO (p-type) or LUMO (n-type) orbitals of neighboring molecules in the semiconductor thin film. In the search of low-bandgap ambipolar materials, where the absence of skeletal distortions allows closer intermolecular π-π stacking and enhanced intramolecular π-conjugation, a new family of oligothiophene-naphthalimide assemblies have been synthesized and characterized, in which both donor and acceptor moieties are directly conjugated through rigid linkers. In previous works we found that oligothiophene-napthalimide assemblies connected through amidine linkers (NDI derivates) exhibit skeletal distortions (50-60º) arising from steric hindrance between the carbonyl group of the arylene core and the sulphur atom of the neighbored thiophene ring (see Figure 1). In the present work we report novel oligo- and polythiophene–naphthalimide analogues NAI-3T, NAI-5T and poly-NAI-8C-3T, in which the connections of the amidine linkage have been inverted in order to prevent steric interactions. Thus, the nitrogen atoms are directly connected to the naphthalene moiety in NAI derivatives while they were attached directly to the thiophene moiety in the previously investigated NDI-3T and NDI-5T. In Figure 1 is depicted the calculated molecular structure of NAI-3T together with that of NDI-3T showing how the steric interactions are not present in the novel NAI derivative. The planar skeletons in these new family induce higher degree of crystallinity and the carrier charge transport can be switched from n-type to ambipolar behaviour. The highest FET performance is achieved for vapor-deposited films of NAI-3T with mobilities of 1.95x10-4cm2V-1s-1 and 2.00x10-4cm2V-1s-1 for electrons and holes, respectively. Finally, these planar semiconductors are compared with their NDI derivates analogues, which exhibit only n-type mobility, in order to understand the origin of the ambipolarity in this new series of molecular semiconductors.
Resumo:
This study presents for the first time the diet of a Late Antiquity population in southern Portugal (Civitas of Pax Julia), from the Roman villa of Monte da Cegonha (predominantly 7th century CE). Stable isotope analysis (δ13C, δ15N, δ18O, 87Sr/86Sr) of human and faunal bone collagen and apatite was conducted in order to understand the influence of Roman subsistence strategies on the way of life of rural inhabitants of the area of Pax Julia and to explore their diet (types of ingested plants, amount of animal resources, terrestrial versus marine resources). X-ray diffraction (XRD) and Fourier transform infra-red spectroscopy (FTIR) analyses were used to determine the degree of bone diagenesis and assess the reliability of the bone stable isotopic composition for palaeodietary reconstruction. Anthropological analysis revealed a cariogenic diet, rich in starchy food and carbohydrates, in at least in two individuals based on the frequency of dental caries. Collagen and apatite carbon isotopic analysis suggested that C3 plants were the basis of the population's diet, complemented with some terrestrial meat and its by-products as reflected by the observed bone collagen nitrogen isotopic composition. Moreover, whilst the fairly low apatite-collagen spacing recorded in some skeletons (at around 4‰) may have been due to freshwater organisms intake, the relatively low nitrogen values observed indicate that this consumption did not occur very often, unless in the form of fresh fish of low trophic level or fish sauces. There were no significant differences in isotopic values depending on gender or burial type. Strontium and oxygen isotopic composition of bone apatite revealed a sedentary community, with the exception of a male individual who probably did not spend his childhood in Monte da Cegonha.