900 resultados para SENSORY PHENOMENA
Resumo:
BACKGROUND: Sensory neuropeptides have been suggested to play a role in the pathogenesis of a number of respiratory diseases including asthma and chronic non-productive cough.
OBJECTIVES: To investigate the action of sensory neuropeptides on airway mast cells obtained by bronchoalveolar lavage (BAL).
METHODS: BAL was performed on 23 nonasthmatic patients with cough (NAC), 11 patients with cough variant asthma (CVA) and 10 nonatopic controls. Washed lavage cells were stimulated (20 min, 37 degrees C) with calcitonin gene-related peptide (CGRP), neurokinin A (NKA) and substance P (25 and 50 micromol/L).
RESULTS: The neuropeptides tested induced histamine release in all groups studied. Only CGRP (50 micromol/L) induced significantly more histamine release from both NAC and CVA patients compared with control subjects (P = 0.038 and 0.045, respectively).
CONCLUSION: Regardless of aetiology, mast cells from patients with chronic cough appear to have an increased responsiveness to CGRP compared with controls. The results of the present study suggest that the role of CGRP in chronic cough should be further investigated.
Resumo:
Reproducible modulations in low-pressure, inductively coupled discharges operating in chlorine and argon-chlorine mixtures have been observed and studied. Changes in the light output, floating potential, negative ion fraction, and charged particle densities were observed. Here we report two types of unstable operational modes in an inductively coupled discharge. On the one hand, when the discharge was matched, to minimize reflected power, instabilities were observed in argon-chlorine plasmas over limited operating conditions of input power and gas pressure. The instability window decreased with increasing chlorine content and was observed for chlorine concentrations between 30% and 60% only. However, when operating at pressures below 5 mTorr and the discharge circuit detuned to increase the reflected power, modulations were observed in a pure chlorine discharge. These modulations varied in nature from a series of sharp bursts to a very periodic behavior and can be controlled, by variation of the matching conditions, to produce an apparent pulsed plasma environment. (C) 2005 American Institute of Physics.
Resumo:
Neural adaptation and inhibition are pervasive characteristics of the primate brain, and are probably understood better within the context of visual processing than any other sensory modality. These processes are thought to underlie illusions in which one motion affects the perceived direction of another, such as the direction aftereffect (DAE) and direction repulsion. The DAE describes how, following prolonged viewing of motion in one direction, the direction of a subsequently viewed test pattern is misperceived. In the case of direction repulsion, the direction difference between two transparently moving surfaces is over-estimated. Explanations of the DAE appeal to neural adaptation whilst direction repulsion is accounted for through lateral inhibition. Here we report on a new illusion, the Binary DAE, in which superimposed slow and fast dots moving in the same direction are perceived to move in different directions following adaptation to a mixed-speed stimulus. This new phenomenon is essentially a combination of the DAE and direction repulsion. Interestingly the magnitude of the binary DAE is greater than would be expected simply through a linear combination of the DAE and direction repulsion, suggesting that the mechanisms underlying these two phenomena interact in a non-linear fashion.
Resumo:
The potential of Raman spectroscopy for the determination of meat quality attributes has been investigated using data from a set of 52 cooked beef samples, which were rated by trained taste panels. The Raman spectra, shear force and cooking loss were measured and PLS used to correlate the attributes with the Raman data. Good correlations and standard errors of prediction were found when the Raman data were used to predict the panels' rating of acceptability of texture (R-2 = 0.71, Residual Mean Standard Error of Prediction (RMSEP)% of the mean (mu) = 15%), degree of tenderness (R-2 = 0.65, RMSEP% of mu = 18%), degree of juiciness (R-2 = 0.62, RMSEP% of mu = 16%), and overall acceptability (R-2 = 0.67, RMSEP% of mu = 11%). In contrast, the mechanically determined shear force was poorly correlated with tenderness (R-2 = 0.15). Tentative interpretation of the plots of the regression coefficients suggests that the alpha-helix to beta-sheet ratio of the proteins and the hydrophobicity of the myofibrillar environment are important factors contributing to the shear force, tenderness, texture and overall acceptability of the beef. In summary, this work demonstrates that Raman spectroscopy can be used to predict consumer-perceived beef quality. In part, this overall success is due to the fact that the Raman method predicts texture and tenderness, which are the predominant factors in determining overall acceptability in the Western world. Nonetheless, it is clear that Raman spectroscopy has considerable potential as a method for non-destructive and rapid determination of beef quality parameters.
Resumo:
There can be wide variation in the level of oral/aural language ability that prelingually hearing-impaired children develop after cochlear implantation. Automatic perceptual processing mechanisms have come under increasing scrutiny in attempts to explain this variation. Using mismatch negativity methods, this study explored associations between auditory sensory memory mechanisms and verbal working memory function in children with cochlear implants and a group of hearing controls of similar age. Whilst clear relationships were observed in the hearing children between mismatch activation and working memory measures, this association appeared to be disrupted in the implant children. These findings would fit with the proposal that early auditory deprivation and a degraded auditory signal can cause changes in the processes underpinning the development of oral/aural language skills in prelingually hearing-impaired children with cochlear implants and thus alter their developmental trajectory
Resumo:
Changes of the electron dynamics during the mode transition (E- to H-mode) in a hydrogen radio-frequency (rf) inductively coupled plasma are investigated using space and phase resolved optical emission spectroscopy. The E- mode is characterized through relatively weak optical emission which is strongly modulated on a nanosecond time scale during the rf-cycle, with one pronounced maximum per cycle. The modulation in H-mode, with twice the rf-frequency, is significantly weaker while the emission intensities are about two orders of magnitude higher. In particular the transition between these two modes is studied under variations of rf-power input and gas pressure. Characteristic spatio-temporal structures are observed and can be understood in the frame of a simple model combining both coupling mechanisms in the transition regime.
Resumo:
The effect of flavor amplification on sensory-specfic satiety was investigated. Nineteen young adults (mean age = 25 years) and 19 elderly adults (mean age = 72 years) rated the sensory properties of six foods, and were then asked to consume normal-flavored or flavor-amplified strawberry yogurt until comfortably full. The participants then re-rated the sensory properties of the six foods. There were no cl differences in the amount of yogurt consumed in either age group. Moreover flavor-fortifying the yogurt had no effect on the amount consumed in either age group. The consumption of both yogurts caused a reduction in rated pleasantness of the yogurt among young adults, but no change in the rated pleasantness of the uneaten foods. However, the elderly did not show a decrease in the rated pleasantness of any of the foods contained in the taste trays This study indicates that sensations of sensory-specific satiety were significantly reduced in the elderly, and these sensations were not induced by the addition of strawberry flavor to the yogurt.