967 resultados para Reducing Emissions from Deforestation and Degradation REDD


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new method for the sensitive determination of amino acids and peptides using the tagging reagent 2-(9-carbazole)-ethyl chloroformate (CEOC) with fluorescence (FL) detection has been developed. Identification of derivatives was carried out by liquid chromotography mass spectrometry. The chromophore in the 2-(9-fluorenyl)-ethyl chloroformate (FMOC) reagent was replaced by carbazole, which resulted in a sensitive fluorescence lerivatizing agent CEOC. CEOC can easily and quickly label peptides and amino acids. Derivatives are stable enough to be efficiently analyzed by high-performance liquid chromatography. Studies on derivatization demonstrate excellent derivative yields over the pH range 8.8-10.0. Maximal yields close to 100% are observed with three- to fourfold molar reagent excess. Derivatives exhibit strong fluorescence and allow direct injection of the reaction mixture with no significant disturbance from the major fluorescent reagent degradation by-products, such as 2(9-carbazole)-ethanol and bis-(2-(9-carbazole)-ethyl) carbonate. In addition, the detection responses for CEOC derivatives are compared to those obtained with FMOC. The ratios AC(CEOC)/AC(FMOC) = 1.00-1.82 for fluorescence (FL) response and AC'(CEOC)/AC'(FMOC) = 1.00-1.21 for ultraviolet (UV) response are observed (here, AC and AC' are, respectively, FL and UV F response). Separation of the derivatized peptides and amino acids has been optimized on a Hypersil BDS C18 column. Excellent linear responses are observed. This method was used successfully to analyze protein hydrolysates from wool and from direct-derivatized beer. (C) 2003 Elsevier Science (USA). All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-molecular-weight dissolved organic matter (HMW-DOM, > 1,000 Daltons) is actively involved in the global biogeochemical cycling of many elements, but its carbon sources and detailed formation pathways are still not well understood. In this study, we measured bulk stable carbon and nitrogen isotopic ratios, lipid composition, and compound-specific carbon isotopic ratios of HMW-DOM samples collected from four U.S. estuaries (Boston Harbor/Massachusetts Bay, Delaware/Chesapeake Bay, San Diego Bay, and San Francisco Bay). Analytical results show (1) a fraction of HMW-DOM (lipid associated) in estuarine and coastal waters is derived from bacteria and phytoplankton; (2) this fraction of HMW-DOM is formed by various release processes of bacterial membrane components and bacterial reworking of phytoplankton-derived material; (3) this fraction of HMW-DOM is generally present in all samples from different coastal systems despite variable organic matter inputs and environmental conditions, suggesting an important bacterial role in HMW-DOM formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Potentilla fruticosa scrub, Kobresia humilis meadow and Kobresia tibetica meadow are widely distributed on the Qinghai-Tibet Plateau. During the grass exuberance period from 3 July to 4September, based on close chamber-GC method, a study on CO2 emissions from different treatments was conducted in these meadows at Haibei research station, CAS. Results indicated that mean CO2emission rates from various treatments were 672.09+152.37 mgm-2h-1 for FC (grass treatment); 425.41+191.99 mgrn-2h-1 for FJ (grass exclusion treatment); 280.36+174.83 mgrn-2h-1 for FL (grass and roots exclusion treatment); 838.95+237.02 mgm-2h-1 for GG (scrub+grass treatment); 528.48+205.67 mgm-2h-1for GC (grass treatment); 268.97 ±99.72 mgm-2h-1 for GL (grass and roots exclusion treatment); and 659.20±94.83 mgm-2h-1 for LC (grass treatment), respectively (FC, FJ, FL, GG, GC, GL, LC were the Chinese abbreviation for various treatments). Furthermore, Kobresia humilis meadow, Potentilla fruticosa scrub meadow and Kobresia tibetica meadow differed greatly in average CO2 emission rate of soil-plant system, in the order of GG>FC>LC>GC. Moreover, in Kobresia humilis meadow,heterotrophic and autotrophic respiration accounted for 42% and 58% of the total respiration of soil-plant system respectively, whereas, in Potentilla fruticosa scrub meadow, heterotrophic and autotrophic respiration accounted for 32% and 68% of total system respiration from G-G; 49% and 51%from GC. In addition, root respiration from Kobresia humilis meadow approximated 145 mgCO2m-2h-1,contributed 34% to soil respiration. During the experiment period, Kobresia humilis meadow and Potentilla fruticosa scrub meadow had a net carbon fixation of 111.11 grn-2 and 243.89 grn-2,respectively. Results also showed that soil temperature was the main factor which influenced CO2 emission from alpine meadow ecosystem, significant correlations were found between soil temperature at 5 cm depth and CO2 emission from GG, GC, FC and FJ treatments. In addition, soil moisture may be the inhibitory factor of CO2 emission from Kobresia tibetica meadow, and more detailed analyses should be done in further research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrous oxide (N2O) emission was measured in a Kobresia humilis meadow and a Potentilla fruticosa meadow in the Qinghai-Tibet Plateau from June 2003 to July 2006. Five treatments were setup in the two alpine meadows. Two bare soil treatments were setup in the K. humilis meadow (BSK) and in the P. fruticosa meadow (BSP) by removing the above- and belowground plant biomass. Three plant community treatments were setup with one in the K. humilis meadow (herbaceous community in the K. humilis meadow-HCK) and two in the P. fruticosa meadow (herbaceous community in the P. fruticosa meadow-HCP, and shrub community in the P. fruticosa meadow-SCP). Nitrous oxide emission from BSP was estimated to be 38.1 +/- 3.6 mu g m(-2) h(-1), significantly higher than from BSK (30.2 +/- 2.8 mu g m(-2) h(-1)) during the whole experiment period. Rates from the two herbaceous blocks (HCK and HCP) were close to 39.5 mu g m(-2) stop h(-1) during the whole experimental period whereas shrub community (SCP) showed significant high emission rates of N2O. Annual rate of N2O emission was estimated to be 356.7 +/- 8.3 and 295.0 +/- 11.6 mg m(-2) year(-1) from the alpine P. fruticosa meadow and from the alpine K. humilis meadow, respectively. These results suggest that alpine meadows in the Qinghai-Tibetan Plateau are an important source of N2O, contributing an average of 0.3 Tg N2O year(-1). We concluded that N2O emission will decrease, due to a predicted vegetation shift from shrubs to grasses imposed by overgrazing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A pre-column derivatization method for the sensitive determination of amino acids and peptides using the tagging reagent 1,2-benzo-3,4dihydrocarbazole-9-ethyl chloroformate (BCEOC) followed by high-performance liquid chromatography with fluorescence detection has been developed. Identification of derivatives was carried out by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS/MS). The chromophore of 2-(9-carbazole)-ethyl chloroformate (CEOC) reagent was replaced by 1,2-benzo-3,4-dihydrocarbazole functional group, which resulted in a sensitive fluorescence derivatizing reagent BCEOC. BCEOC can easily and quickly label peptides and amino acids. Derivatives are stable enough to be efficiently analyzed by high-performance liquid chromatography. The derivatives showed an intense protonated molecular ion corresponding m/z (M + H)(+) under electrospray ionization (ESI) positive-ion mode with an exception being Tyr detected at negative mode. The collision-induced dissociation of protonated molecular ion formed a product at m/z 246.2 corresponding to the cleavage of C-O bond of BCEOC molecule. Studies on derivatization demonstrate excellent derivative yields over the pH 9.0-10.0. Maximal yields close to 100% are observed with a 3-4-fold molar reagent excess. Derivatives exhibit strong fluorescence and extracted detzvatization solution with n-hexane/ethyl acetate (10:1, v/v) allows for the direct injection with no significant interference from the major fluorescent reagent degradation by-products, such as 1,2-benzo-3,4-dihydrocarbazole-9-ethanol (BDC-OH) (a major by-product), mono- 1,2-benzo-3,4-dihydrocarbazole-9-ethyl carbonate (BCEOC-OH) and bis-(1,2-benzo-3,4-dihydrocarbazole-9-ethyl) carbonate (BCEOC)(2). In addition, the detection responses for BCEOC derivatives are compared to those obtained with previously synthesized 2-(9-carbazole)-ethyl chloroformate (CEOC) in our laboratory. The ratios AC(BCEOC)/AC(CEOC) = 2.05-6.51 for fluorescence responses are observed (here, AC is relative fluorescence response). Separation of the derivatized peptides and amino acids had been optimized on Hypersil BDS C-18 column. Detection limits were calculated from 1.0 pmol injection at a signal-to-noise ratio of 3, and were 6.3 (Lys)-177.6 (His) fmol. The mean interday accuracy ranged from 92 to 106% for fluorescence detection with mean %CV < 7.5. The mean interday precision for all standards was < 10% of the expected concentration. Excellent linear responses were observed with coefficients of > 0.9999. Good compositional data could be obtained from the analysis of derivatized protein hydrolysates containing as little as 50.5 ng of sample. Therefore, the facile BCEOC derivatization coupled with mass spectrometry allowed the development of a highly sensitive and specific method for the quantitative analysis of trace levels of amino acids and peptides from biological and natural environmental samples. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We measured methane (CH4) emissions in the Luanhaizi wetland, a typical alpine wetland on the Qinghai-Tibetan Plateau, China, during the plant growth season (early July to mid-September) in 2002. Our aim was to quantify the spatial and temporal variation of CH4 flux and to elucidate key factors in this variation. Static chamber measurements of CH4 flux were made in four vegetation zones along a gradient of water depth. There were three emergent-plant zones (Hippuris-dominated; Scirpus-dominated; and Carex-dominated) and one submerged-plant zone (Potamogeton-dominated). The smallest CH4 flux (seasonal mean = 33.1 mg CH4 m(-2) d(-1)) was, observed in the Potamogeton-dominated zone, which occupied about 74% of the total area of the wetland. The greatest CH4 flux (seasonal mean = 214 mg CH4 m(-2) d(-1)) was observed in the Hippuris-dominated zone, in the second-deepest water area. CH4 flux from three zones (excluding the Carex-dominated zone) showed a marked diurnal change and decreased dramatically under dark conditions. Light intensity had a major influence on the temporal variation in CH4 flux, at least in three of the zones. Methane fluxes from all zones increased during the growing season with increasing aboveground biomass. CH4 flux from the Scirpus-dominated zone was significantly lower than in the other emergent-plant zones despite the large biomass, because the root and rhizome intake ports for CH4 transport in the dominant species were distributed in shallower and more oxidative soil than occupied in the other zones. Spatial and temporal variation in CH4 flux from the alpine wetland was determined by the vegetation zone. Among the dominant species in each zone, there were variations in the density and biomass of shoots, gas-transport system, and root-rhizome architecture. The CH4 flux from a typical alpine wetland on the Qinghai-Tibetan Plateau was as high as those of other boreal and alpine wetlands. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many factors such as poverty, ineffective institutions and environmental regulations may prevent developing countries from managing how natural resources are extracted to meet a strong market demand. Extraction for some resources has reached such proportions that evidence is measurable from space. We present recent evidence of the global demand for a single commodity and the ecosystem destruction resulting from commodity extraction, recorded by satellites for one of the most biodiverse areas of the world. We find that since 2003, recent mining deforestation in Madre de Dios, Peru is increasing nonlinearly alongside a constant annual rate of increase in international gold price (∼18%/yr). We detect that the new pattern of mining deforestation (1915 ha/year, 2006-2009) is outpacing that of nearby settlement deforestation. We show that gold price is linked with exponential increases in Peruvian national mercury imports over time (R(2)âŠ=âŠ0.93, pâŠ=âŠ0.04, 2003-2009). Given the past rates of increase we predict that mercury imports may more than double for 2011 (∼500 t/year). Virtually all of Peru's mercury imports are used in artisanal gold mining. Much of the mining increase is unregulated/artisanal in nature, lacking environmental impact analysis or miner education. As a result, large quantities of mercury are being released into the atmosphere, sediments and waterways. Other developing countries endowed with gold deposits are likely experiencing similar environmental destruction in response to recent record high gold prices. The increasing availability of satellite imagery ought to evoke further studies linking economic variables with land use and cover changes on the ground.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon dioxide (CO2) transfer from inland waters to the atmosphere, known as CO2 evasion, is a component of the global carbon cycle. Global estimates of CO2 evasion have been hampered, however, by the lack of a framework for estimating the inland water surface area and gas transfer velocity and by the absence of a global CO2 database. Here we report regional variations in global inland water surface area, dissolved CO2 and gas transfer velocity. We obtain global CO2 evasion rates of 1.8petagrams of carbon (Pg C) per year from streams and rivers and 0.32Pg Cyr-1 from lakes and reservoirs, where the upper and lower limits are respectively the 5th and 95th confidence interval percentiles. The resulting global evasion rate of 2.1 Pg Cyr-1 is higher than previous estimates owing to a larger stream and river evasion rate. Our analysis predicts global hotspots in stream and river evasion, with about 70 per cent of the flux occurring over just 20 per cent of the land surface. The source of inland water CO2 is still not known with certainty and new studies are needed to research the mechanisms controlling CO2 evasion globally. © 2013 Macmillan Publishers Limited. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spatio-temporal data on cytotaxonomic identifications of larvae of different members of the Simulium damnosum complex collected from rivers in southern Ghana and south-western Togo from 1975 until 1997 were analysed. When the data were combined, the percentages of savannah blackflies (S. damnosum sensu stricto and S. sirbanum) in the samples were shown to have been progressively increasing since 1975. The increases were statistically significant (P < 0·001), but the rates of increase were not linear. Further analyses were conducted according to the collection seasons and locations of the samples, to account for possible biases such as savannah flies occurring further south in the dry season or a preponderance of later samples from northern rivers having more savannah flies. These analyses showed that the increasing trend was statistically significant (P< 0·0001) only during the periods April to June and October to December. The presence of adult savannah flies carrying infective larvae (L3) indistinguishable from those of Onchocerca volvulus in the study zone was confirmed by examinations of captured flies. The percentages of savannah flies amongst the human-biting populations and the percentages with L3s in the head were higher during dry seasons than wet seasons and the savannah species were found furthest south (5 °25â²N) in the dry season. Comparisons of satellite images taken in 1973 and 1990 over a study area in south-western Ghana encompassing stretches of the Tano and Bia rivers demonstrated that there have been substantial increases in urban and savannah areas, at the expense of forest. This was so not only for the whole images but also for subsamples of the images taken at 1, 2, 4, 8 and 16 km distant from sites alongside the River Tano. At every distance from the river, the percentages of pixels classified as urban or savannah have increased in 1990 compared with 1973, while those classified as degraded or dense forest have decreased. The possibility that the proportionate increases in savannah forms of the vectors of onchocerciasis, and hence in the likelihood of the transmission of savannah strains of the disease in formerly forested areas, were related to the decreases in forest cover is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current global inventories of ammonia emissions identify the ocean as the largest natural source. This source depends on seawater pH, temperature, and the concentration of total seawater ammonia (NHx(sw)), which reflects a balance between remineralization of organic matter, uptake by plankton, and nitrification. Here we compare [NHx(sw)] from two global ocean biogeochemical models (BEC and COBALT) against extensive ocean observations. Simulated [NHx(sw)] are generally biased high. Improved simulation can be achieved in COBALT by increasing the plankton affinity for NHx within observed ranges. The resulting global ocean emissions is 2.5 TgN aâˆ1, much lower than current literature values (7â23 TgN aâˆ1), including the widely used Global Emissions InitiAtive (GEIA) inventory (8 TgN aâˆ1). Such a weak ocean source implies that continental sources contribute more than half of atmospheric NHx over most of the ocean in the Northern Hemisphere. Ammonia emitted from oceanic sources is insufficient to neutralize sulfate aerosol acidity, consistent with observations. There is evidence over the Equatorial Pacific for a missing source of atmospheric ammonia that could be due to photolysis of marine organic nitrogen at the ocean surface or in the atmosphere. Accommodating this possible missing source yields a global ocean emission of ammonia in the range 2â5 TgN aâˆ1, comparable in magnitude to other natural sources from open fires and soils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacteroides fragilis is a bacterium that resides in the normal human gastro-intestinal tract; however, it is also the most commonly isolated Gram-negative obligate anaerobe from human clinical infections, such as intra-abdominal abscesses, and the most common cause of anaerobic bacteraemia. Abscess formation is important in bacterial containment, limiting dissemination of infection and bacteraemia. In this study, we investigated B. fragilis binding and degradation of human fibrinogen, the major structural component involved in fibrin abscess formation. We have shown that B. fragilis NCTC9343 binds human fibrinogen. A putative Bacteroides fragilis fibrinogen-binding protein, designated BF-FBP, identified in the genome sequence of NCTC9343, was cloned and expressed in Escherichia coli. The purified recombinant BF-FBP bound primarily to the human fibrinogen Bß-chain. In addition, we have identified fibrinogenolytic activity in B. fragilis exponential phase culture supernatants, associated with fibrinogenolytic metalloproteases in NCTC9343 and 638R, and cysteine protease activity in YCH46. All nine clinical isolates of B. fragilis examined degraded human fibrinogen; with eight isolates, initial A-chain degradation was observed, with varying Bß-chain and -chain degradation. With one blood culture isolate, Bß-chain and -chain degradation occurred first, followed by subsequent A-chain degradation. Our data raise the possibility that the fibrinogen-binding protein of B. fragilis, along with a variety of fibrinogenolytic proteases, may be an important virulence factor that facilitates dissemination of infection via reduction or inhibition of abscess formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

<p>Male infertility is a major cause of problems for many couples in conceiving a child. Recently, lifestyle pastimes such as alcohol, tobacco and marijuana have been shown to have further negative effects on male reproduction. The endocannabinoid system (ECS), mainly through the action of anandamide (AEA) and 2-arachidonoylglycerol (2-AG) at cannabinoid (CB(1), CB(2)) and vanilloid (TRPV1) receptors, plays a crucial role in controlling functionality of sperm, with a clear impact on male reproductive potential. Here, sperm from fertile and infertile men were used to investigate content (through LC-ESI-MS), mRNA (through quantitative RT-PCR), protein (through Western Blotting and ELISA) expression, and functionality (through activity and binding assays) of the main metabolic enzymes of AEA and 2-AG (NAPE-PLD and FAAH, for AEA; DAGL and MAGL for 2-AG), as well as of their binding receptors CB(1), CB(2) and TRPV1. Our findings show a marked reduction of AEA and 2-AG content in infertile seminal plasma, paralleled by increased degradation: biosynthesis ratios of both substances in sperm from infertile versus fertile men. In addition, TRPV1 binding was detected in fertile sperm but was undetectable in infertile sperm, whereas that of CB(1) and CB(2) receptors was not statistically different in the two groups. In conclusion, this study identified unprecedented alterations of the ECS in infertile sperm, that might impact on capacitation and acrosome reaction, and hence fertilization outcomes. These alterations might also point to new biomarkers to determine male reproductive defects, and identify distinct ECS elements as novel targets for therapeutic exploitation of ECS-oriented drugs to treat male fertility problems. </p>