974 resultados para Radio signal estimation
Resumo:
In this paper, we propose an approach to the transient and steady-state analysis of the affine combination of one fast and one slow adaptive filters. The theoretical models are based on expressions for the excess mean-square error (EMSE) and cross-EMSE of the component filters, which allows their application to different combinations of algorithms, such as least mean-squares (LMS), normalized LMS (NLMS), and constant modulus algorithm (CMA), considering white or colored inputs and stationary or nonstationary environments. Since the desired universal behavior of the combination depends on the correct estimation of the mixing parameter at every instant, its adaptation is also taken into account in the transient analysis. Furthermore, we propose normalized algorithms for the adaptation of the mixing parameter that exhibit good performance. Good agreement between analysis and simulation results is always observed.
Resumo:
We derive an easy-to-compute approximate bound for the range of step-sizes for which the constant-modulus algorithm (CMA) will remain stable if initialized close to a minimum of the CM cost function. Our model highlights the influence, of the signal constellation used in the transmission system: for smaller variation in the modulus of the transmitted symbols, the algorithm will be more robust, and the steady-state misadjustment will be smaller. The theoretical results are validated through several simulations, for long and short filters and channels.
Resumo:
As is well known, Hessian-based adaptive filters (such as the recursive-least squares algorithm (RLS) for supervised adaptive filtering, or the Shalvi-Weinstein algorithm (SWA) for blind equalization) converge much faster than gradient-based algorithms [such as the least-mean-squares algorithm (LMS) or the constant-modulus algorithm (CMA)]. However, when the problem is tracking a time-variant filter, the issue is not so clear-cut: there are environments for which each family presents better performance. Given this, we propose the use of a convex combination of algorithms of different families to obtain an algorithm with superior tracking capability. We show the potential of this combination and provide a unified theoretical model for the steady-state excess mean-square error for convex combinations of gradient- and Hessian-based algorithms, assuming a random-walk model for the parameter variations. The proposed model is valid for algorithms of the same or different families, and for supervised (LMS and RLS) or blind (CMA and SWA) algorithms.
Resumo:
Second-order phase locked loops (PLLs) are devices that are able to provide synchronization between the nodes in a network even under severe quality restrictions in the signal propagation. Consequently, they are widely used in telecommunication and control. Conventional master-slave (M-S) clock-distribution systems are being, replaced by mutually connected (MC) ones due to their good potential to be used in new types of application such as wireless sensor networks, distributed computation and communication systems. Here, by using an analytical reasoning, a nonlinear algebraic system of equations is proposed to establish the existence conditions for the synchronous state in an MC PLL network. Numerical experiments confirm the analytical results and provide ideas about how the network parameters affect the reachability of the synchronous state. The phase-difference oscillation amplitudes are related to the node parameters helping to design PLL neural networks. Furthermore, estimation of the acquisition time depending on the node parameters allows the performance evaluation of time distribution systems and neural networks based on phase-locked techniques. (c) 2008 Elsevier GmbH. All rights reserved.
Resumo:
This work aims at proposing the use of the evolutionary computation methodology in order to jointly solve the multiuser channel estimation (MuChE) and detection problems at its maximum-likelihood, both related to the direct sequence code division multiple access (DS/CDMA). The effectiveness of the proposed heuristic approach is proven by comparing performance and complexity merit figures with that obtained by traditional methods found in literature. Simulation results considering genetic algorithm (GA) applied to multipath, DS/CDMA and MuChE and multi-user detection (MuD) show that the proposed genetic algorithm multi-user channel estimation (GAMuChE) yields a normalized mean square error estimation (nMSE) inferior to 11%, under slowly varying multipath fading channels, large range of Doppler frequencies and medium system load, it exhibits lower complexity when compared to both maximum likelihood multi-user channel estimation (MLMuChE) and gradient descent method (GrdDsc). A near-optimum multi-user detector (MuD) based on the genetic algorithm (GAMuD), also proposed in this work, provides a significant reduction in the computational complexity when compared to the optimum multi-user detector (OMuD). In addition, the complexity of the GAMuChE and GAMuD algorithms were (jointly) analyzed in terms of number of operations necessary to reach the convergence, and compared to other jointly MuChE and MuD strategies. The joint GAMuChE-GAMuD scheme can be regarded as a promising alternative for implementing third-generation (3G) and fourth-generation (4G) wireless systems in the near future. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Sound source localization (SSL) is an essential task in many applications involving speech capture and enhancement. As such, speaker localization with microphone arrays has received significant research attention. Nevertheless, existing SSL algorithms for small arrays still have two significant limitations: lack of range resolution, and accuracy degradation with increasing reverberation. The latter is natural and expected, given that strong reflections can have amplitudes similar to that of the direct signal, but different directions of arrival. Therefore, correctly modeling the room and compensating for the reflections should reduce the degradation due to reverberation. In this paper, we show a stronger result. If modeled correctly, early reflections can be used to provide more information about the source location than would have been available in an anechoic scenario. The modeling not only compensates for the reverberation, but also significantly increases resolution for range and elevation. Thus, we show that under certain conditions and limitations, reverberation can be used to improve SSL performance. Prior attempts to compensate for reverberation tried to model the room impulse response (RIR). However, RIRs change quickly with speaker position, and are nearly impossible to track accurately. Instead, we build a 3-D model of the room, which we use to predict early reflections, which are then incorporated into the SSL estimation. Simulation results with real and synthetic data show that even a simplistic room model is sufficient to produce significant improvements in range and elevation estimation, tasks which would be very difficult when relying only on direct path signal components.
Resumo:
Asymmetric discrete triangular distributions are introduced in order to extend the symmetric ones serving for discrete associated kernels in the nonparametric estimation for discrete functions. The extension from one to two orders around the mode provides a large family of discrete distributions having a finite support. Establishing a bridge between Dirac and discrete uniform distributions, some different shapes are also obtained and their properties are investigated. In particular, the mean and variance are pointed out. Applications to discrete kernel estimators are given with a solution to a boundary bias problem. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The zero-inflated negative binomial model is used to account for overdispersion detected in data that are initially analyzed under the zero-Inflated Poisson model A frequentist analysis a jackknife estimator and a non-parametric bootstrap for parameter estimation of zero-inflated negative binomial regression models are considered In addition an EM-type algorithm is developed for performing maximum likelihood estimation Then the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and some ways to perform global influence analysis are derived In order to study departures from the error assumption as well as the presence of outliers residual analysis based on the standardized Pearson residuals is discussed The relevance of the approach is illustrated with a real data set where It is shown that zero-inflated negative binomial regression models seems to fit the data better than the Poisson counterpart (C) 2010 Elsevier B V All rights reserved
Resumo:
In this study, regression models are evaluated for grouped survival data when the effect of censoring time is considered in the model and the regression structure is modeled through four link functions. The methodology for grouped survival data is based on life tables, and the times are grouped in k intervals so that ties are eliminated. Thus, the data modeling is performed by considering the discrete models of lifetime regression. The model parameters are estimated by using the maximum likelihood and jackknife methods. To detect influential observations in the proposed models, diagnostic measures based on case deletion, which are denominated global influence, and influence measures based on small perturbations in the data or in the model, referred to as local influence, are used. In addition to those measures, the local influence and the total influential estimate are also employed. Various simulation studies are performed and compared to the performance of the four link functions of the regression models for grouped survival data for different parameter settings, sample sizes and numbers of intervals. Finally, a data set is analyzed by using the proposed regression models. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Crop rotation in center-pivot for phytonematode control: density variation, pathogenicity and crop loss estimation A field study conducted over three consecutive years, on a farm using crop rotation system under center-pivot and infested with the nematodes Pratylenchus brachyurus, P. zeae, Meloidogyne incognita, Paratrichodorus minor, Helicotylenchus dihystera, Mesocriconema ornata and M. onoense, demonstrated that intensive crop systems provide conditions for the maintenance of high densities of polyphagous phytonematodes. Of the crops established on the farm (cotton, maize, soybean and cowpea), cotton and soybean suffered the most severe crop losses, caused respectively by M. incognita and P. brachyurus. Since maize is a good host for both nematodes, but tolerant of M. incognita, its exclusion from cropping system would be favorable to the performance of cotton, soybean and cowpea. Results from experiments carried out in controlled conditions confirmed the pathogenicity of P. brachyurus on cotton. Additional management with genetic resistance was useful in fields infested with M. incognita, although the soybean performance was affected by low resistance of the cultivars used for P. brachyurus. In conclusion, crop rotation must be carefully planned in areas infested with polyphagous nematodes, specifically in the case of occurrence of two or more major pathogenic nematodes.
Resumo:
Several aspects of photoperception and light signal transduction have been elucidated by studies with model plants. However, the information available for economically important crops, such as Fabaceae species, is scarce. In order to incorporate the existing genomic tools into a strategy to advance soybean research, we have investigated publicly available expressed sequence tag ( EST) sequence databases in order to identify Glycine max sequences related to genes involved in light-regulated developmental control in model plants. Approximately 38,000 sequences from open-access databases were investigated, and all bona fide and putative photoreceptor gene families were found in soybean sequence databases. We have identified G. max orthologs for several families of transcriptional regulators and cytoplasmic proteins mediating photoreceptor-induced responses, although some important Arabidopsis phytochrome-signaling components are absent. Moreover, soybean and Arabidopsis gene-family homologs appear to have undergone a distinct expansion process in some cases. We propose a working model of light perception, signal transduction and response-eliciting in G. max, based on the identified key components from Arabidopsis. These results demonstrate the power of comparative genomics between model systems and crop species to elucidate several aspects of plant physiology and metabolism.
Resumo:
The development of genetic maps for auto-incompatible species, such as the yellow passion fruit (Passiflora edulis Sims f.flavicarpa Deg.) is restricted due to the unfeasibility of obtaining traditional mapping populations based on inbred lines. For this reason, yellow passion fruit linkage maps were generally constructed using a strategy known as two-way pseudo-testeross, based on monoparental dominant markers segregating in a 1:1 fashion. Due to the lack of information from these markers in one of the parents, two individual (parental) maps were obtained. However, integration of these maps is essential, and biparental markers can be used for such an operation. The objective of our study was to construct an integrated molecular map for a full-sib population of yellow passion fruit combining different loci configuration generated from amplified fragment length polymorphisms (AFLPs) and microsatellite markers and using a novel approach based on simultaneous maximum-likelihood estimation of linkage and linkage phases, specially designed for outcrossing species. Of the total number of loci, approximate to 76%, 21%, 0.7%, and 2.3% did segregate in 1:1, 3:1, 1:2:1, and 1:1:1:1 ratios, respectively. Ten linkage groups (LGs) were established with a logarithm of the odds (LOD) score >= 5.0 assuming a recombination fraction : <= 0.35. On average, 24 markers were assigned per LG, representing a total map length of 1687 cM, with a marker density of 6.9 cM. No markers were placed as accessories on the map as was done with previously constructed individual maps.
Resumo:
In this work, supercritical technology was used to obtain extracts from Ocimum basilicum (sweet basil) with CO(2) and the cosolvent H(2)O at 1, 10, and 20% (w/w). The raw material was obtained from hydroponic cultivation. The extract`s global yield isotherms, chemical compositions, antioxidant activity, and cost of manufacturing were determined. The extraction assays were done for pressures of 10 to 30 MPa at 303 to 323 K. The identification of the compounds present in the extracts was made by GC-MS and ESI-MS. The antioxidant activity of extracts was determined using the coupled reaction of beta-carotene and linolenic acid. At 1% of cosolvent, the largest global yield was obtained at 10 MPa and 303 K (2%, dry basis-d.b.); at 10% of cosolvent the largest global yield was obtained at 10 and 15 MPa (11%, d.b.), and at 20% of cosolvent the largest global yield was detected at 30 MPa and 303 K (24%, d.b.). The main components identified in the extracts were eugenol, germacrene-D, epi-alpha-cadinol, malic acid, tartaric acid, ramnose, caffeic acid, quinic acid, kaempferol, caffeoylquinic acid, and kaempferol 3-O-glucoside. Sweet basil extracts exhibited high antioxidant activity compared to beta-carotene. Three types of SFE extracts from sweet basil were produced, for which the estimated cost of manufacturing (class 5 type) varied from US$ 47.96 to US$ 1,049.58 per kilogram of dry extract.
Resumo:
The leaf area index (LAI) of fast-growing Eucalyptus plantations is highly dynamic both seasonally and interannually, and is spatially variable depending on pedo-climatic conditions. LAI is very important in determining the carbon and water balance of a stand, but is difficult to measure during a complete stand rotation and at large scales. Remote-sensing methods allowing the retrieval of LAI time series with accuracy and precision are therefore necessary. Here, we tested two methods for LAI estimation from MODIS 250m resolution red and near-infrared (NIR) reflectance time series. The first method involved the inversion of a coupled model of leaf reflectance and transmittance (PROSPECT4), soil reflectance (SOILSPECT) and canopy radiative transfer (4SAIL2). Model parameters other than the LAI were either fixed to measured constant values, or allowed to vary seasonally and/or with stand age according to trends observed in field measurements. The LAI was assumed to vary throughout the rotation following a series of alternately increasing and decreasing sigmoid curves. The parameters of each sigmoid curve that allowed the best fit of simulated canopy reflectance to MODIS red and NIR reflectance data were obtained by minimization techniques. The second method was based on a linear relationship between the LAI and values of the GEneralized Soil Adjusted Vegetation Index (GESAVI), which was calibrated using destructive LAI measurements made at two seasons, on Eucalyptus stands of different ages and productivity levels. The ability of each approach to reproduce field-measured LAI values was assessed, and uncertainty on results and parameter sensitivities were examined. Both methods offered a good fit between measured and estimated LAI (R(2) = 0.80 and R(2) = 0.62 for model inversion and GESAVI-based methods, respectively), but the GESAVI-based method overestimated the LAI at young ages. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Rapid alkalinization factor (RALF) is part of a growing family of small peptides with hormone characteristics in plants. Initially isolated from leaves of tobacco plants, RALF peptides can be found throughout the plant kingdom and they are expressed ubiquitously in plants. We took advantage of the small gene family size of RALF genes in sugarcane and the ordered cellular growth of the grass sugarcane leaves to gain information about the function of RALF peptides in plants. Here we report the isolation of two RALF peptides from leaves of sugarcane plants using the alkalinization assay. SacRALF1 was the most abundant and, when added to culture media, inhibited growth of microcalli derived from cell suspension cultures at concentrations as low as 0.1 mu M. Microcalli exposed to exogenous SacRALF1 for 5 days showed a reduced number of elongated cells. Only four copies of SacRALF genes were found in sugarcane plants. All four SacRALF genes are highly expressed in young and expanding leaves and show a low or undetectable level of expression in expanded leaves. In half-emerged leaf blades, SacRALF transcripts were found at high levels at the basal portion of the leaf and at low levels at the apical portion. Gene expression analyzes localize SacRALF genes in elongation zones of roots and leaves. Mature leaves, which are devoid of expanding cells, do not show considerable expression of SacRALF genes. Our findings are consistent with SacRALF genes playing a role in plant development potentially regulating tissue expansion.