916 resultados para Propriedade Lipschitz
Resumo:
O trespasse de estabelecimento comercial instalado em imóvel arrendado permite a transmissão da posição de arrendatário sem dependência do consentimento do senhorio, o que constitui uma exceção ao regime regra da transmissão da posição contratual. No entanto, o legislador protege, de algum modo, a posição do senhorio, atribuindo-lhe, em certos casos, o direito de preferência e, em todos casos, o direito a ser informado da transmissão. A lei, no entanto, parece considerar o trespasse como uma transmissão definitiva do estabelecimento e, dessa forma, também definitiva a transmissão da posição de arrendatário. Sucede que, por vezes, o trespasse oneroso é sujeito, por vontade das partes, a uma cláusula de reserva de propriedade a favor do alienante, até ao integral pagamento do preço. No ordenamento jurídico português, a doutrina defende maioritariamente que a venda com reserva de propriedade é uma alienação feita sob condição suspensiva, isto é, um negócio cujos efeitos se produzem de forma plena, ficando somente em suspenso o efeito translativo; assim o vendedor mantém-se como proprietário na pendência da condição, detendo o comprador apenas uma pura e “simples” expectativa de aquisição futura de uma coisa. A presente dissertação tem por objectivo analisar as implicações da aposição de tal cláusula ao trespasse de estabelecimento comercial: qual a natureza dessa cláusula e, sobretudo, quais as suas implicações para a dinâmica das posições dos diferentes sujeitos afetados pelo negócio: trespassante, trespassário e senhorio do prédio arrendado.
Resumo:
O presente trabalho refere-se a uma Avaliação Socioambiental realizada pela Embrapa Meio Ambiente em parceria com a Cooperativa Agropecuária Mista de Piracanjuba (COAPIL),como parte de um projeto de Gestão Ambiental da Produção Leiteira na Região Centro-Sul desenvolvido pela Universidade Católica de Goiás (UCG). Esta avaliação resultou da aplicação do Sistema Base de Avaliação e Eco-Certificação de Atividades Rurais (Eco-cert.Rural) na diversificação produtiva e na adoção de boas práticas de produção em uma pequena propriedade familiar no município de Piracanjuba/GO. Para tanto, foi realizada no dia 21 de Fevereiro de 2008, uma entrevista/vistoria com o acompanhamento do proprietário para a avaliação dos indicadores de desempenho socioambiental das atividades praticada na propriedade. O Sistema Eco-cert.Rural consiste de um conjunto de planilhas eletrônicas (plataforma MS-Excel) construídas para a avaliação do desempenho ecológico e socioambiental de uma dada atividade rural, considerando seus impactos ecológicos, econômicos e sociais. O sistema compõe-se de duas dimensões (Ecológica e Socioambiental)considerando sete aspectos essenciais de avaliação: i. Uso de Insumos e Recursos, ii. Qualidade Ambiental, iii. Respeito ao Consumidor, iv. Emprego, v. Renda, vi. Saúde e vii. Gestão e Administração, que são expressos por vinte e quatro indicadores e cento e vinte cinco componentes. O resultado final desta avaliação consiste no Índice de Desempenho da Atividade, que foi de 1,41 (de uma escala que varia de ?15 a +15) no estabelecimento estudado mostrando uma tendência positiva no manejo praticado no estabelecimento.
Resumo:
2015
Resumo:
In this paper, we consider the variable-order nonlinear fractional diffusion equation View the MathML source where xRα(x,t) is a generalized Riesz fractional derivative of variable order View the MathML source and the nonlinear reaction term f(u,x,t) satisfies the Lipschitz condition |f(u1,x,t)-f(u2,x,t)|less-than-or-equals, slantL|u1-u2|. A new explicit finite-difference approximation is introduced. The convergence and stability of this approximation are proved. Finally, some numerical examples are provided to show that this method is computationally efficient. The proposed method and techniques are applicable to other variable-order nonlinear fractional differential equations.
Resumo:
In this paper, we consider the following non-linear fractional reaction–subdiffusion process (NFR-SubDP): Formula where f(u, x, t) is a linear function of u, the function g(u, x, t) satisfies the Lipschitz condition and 0Dt1–{gamma} is the Riemann–Liouville time fractional partial derivative of order 1 – {gamma}. We propose a new computationally efficient numerical technique to simulate the process. Firstly, the NFR-SubDP is decoupled, which is equivalent to solving a non-linear fractional reaction–subdiffusion equation (NFR-SubDE). Secondly, we propose an implicit numerical method to approximate the NFR-SubDE. Thirdly, the stability and convergence of the method are discussed using a new energy method. Finally, some numerical examples are presented to show the application of the present technique. This method and supporting theoretical results can also be applied to fractional integrodifferential equations.
Resumo:
A priority when designing control strategies for autonomous underwater vehicles is to emphasize their cost of implementation on a real vehicle and at the same time to minimize a prescribed criterion such as time, energy, payload or combination of those. Indeed, the major issue is that due to the vehicles' design and the actuation modes usually under consideration for underwater platforms the number of actuator switchings must be kept to a small value to ensure feasibility and precision. This constraint is typically not verified by optimal trajectories which might not even be piecewise constants. Our goal is to provide a feasible trajectory that minimizes the number of switchings while maintaining some qualities of the desired trajectory, such as optimality with respect to a given criterion. The one-sided Lipschitz constant is used to derive theoretical estimates. The theory is illustrated on two examples, one is a fully actuated underwater vehicle capable of motion in six degrees-of-freedom and one is minimally actuated with control motions constrained to the vertical plane.
Resumo:
A fractional FitzHugh–Nagumo monodomain model with zero Dirichlet boundary conditions is presented, generalising the standard monodomain model that describes the propagation of the electrical potential in heterogeneous cardiac tissue. The model consists of a coupled fractional Riesz space nonlinear reaction-diffusion model and a system of ordinary differential equations, describing the ionic fluxes as a function of the membrane potential. We solve this model by decoupling the space-fractional partial differential equation and the system of ordinary differential equations at each time step. Thus, this means treating the fractional Riesz space nonlinear reaction-diffusion model as if the nonlinear source term is only locally Lipschitz. The fractional Riesz space nonlinear reaction-diffusion model is solved using an implicit numerical method with the shifted Grunwald–Letnikov approximation, and the stability and convergence are discussed in detail in the context of the local Lipschitz property. Some numerical examples are given to show the consistency of our computational approach.
Resumo:
In this article, a non-autonomous (time-varying) semilinear system is considered and its approximate controllability is investigated. The notion of 'bounded integral contractor', introduced by Altman, has been exploited to obtain sufficient conditions for approximate controllability. This condition is weaker than Lipschitz condition. The main theorems of Naito [11, 12] are obtained as corollaries of our main results. An example is also given to show how our results weaken the conditions assumed by Sukavanam[17].
Resumo:
l-r: Martin Lipschitz, Sam Kohn, Hermann Judey, Willy Lipschitz, Georg Eliasberg and Jacob Judey-Barosin
Resumo:
Including Hilde Caro, Lotte Lipschitz and Ellen Milch
Composition operators, Aleksandrov measures and value distribution of analytic maps in the unit disc
Resumo:
A composition operator is a linear operator that precomposes any given function with another function, which is held fixed and called the symbol of the composition operator. This dissertation studies such operators and questions related to their theory in the case when the functions to be composed are analytic in the unit disc of the complex plane. Thus the subject of the dissertation lies at the intersection of analytic function theory and operator theory. The work contains three research articles. The first article is concerned with the value distribution of analytic functions. In the literature there are two different conditions which characterize when a composition operator is compact on the Hardy spaces of the unit disc. One condition is in terms of the classical Nevanlinna counting function, defined inside the disc, and the other condition involves a family of certain measures called the Aleksandrov (or Clark) measures and supported on the boundary of the disc. The article explains the connection between these two approaches from a function-theoretic point of view. It is shown that the Aleksandrov measures can be interpreted as kinds of boundary limits of the Nevanlinna counting function as one approaches the boundary from within the disc. The other two articles investigate the compactness properties of the difference of two composition operators, which is beneficial for understanding the structure of the set of all composition operators. The second article considers this question on the Hardy and related spaces of the disc, and employs Aleksandrov measures as its main tool. The results obtained generalize those existing for the case of a single composition operator. However, there are some peculiarities which do not occur in the theory of a single operator. The third article studies the compactness of the difference operator on the Bloch and Lipschitz spaces, improving and extending results given in the previous literature. Moreover, in this connection one obtains a general result which characterizes the compactness and weak compactness of the difference of two weighted composition operators on certain weighted Hardy-type spaces.
Resumo:
Charts of the various families related to the Lindley family: Lipschitz, Heimann, Edinger, Hochstaedter, Goldschmidt, Jakobson, Braunschweig.
Resumo:
Consider a sequence of closed, orientable surfaces of fixed genus g in a Riemannian manifold M with uniform upper bounds on the norm of mean curvature and area. We show that on passing to a subsequence, we can choose parametrisations of the surfaces by inclusion maps from a fixed surface of the same genus so that the distance functions corresponding to the pullback metrics converge to a pseudo-metric and the inclusion maps converge to a Lipschitz map. We show further that the limiting pseudo-metric has fractal dimension two. As a corollary, we obtain a purely geometric result. Namely, we show that bounds on the mean curvature, area and genus of a surface F subset of M, together with bounds on the geometry of M, give an upper bound on the diameter of F. Our proof is modelled on Gromov's compactness theorem for J-holomorphic curves.
Resumo:
Biochemical pathways involving chemical kinetics in medium concentrations (i.e., at mesoscale) of the reacting molecules can be approximated as chemical Langevin equations (CLE) systems. We address the physically consistent non-negative simulation of the CLE sample paths as well as the issue of non-Lipschitz diffusion coefficients when a species approaches depletion and any stiffness due to faster reactions. The non-negative Fully Implicit Stochastic alpha (FIS alpha) method in which stopped reaction channels due to depleted reactants are deleted until a reactant concentration rises again, for non-negativity preservation and in which a positive definite Jacobian is maintained to deal with possible stiffness, is proposed and analysed. The method is illustrated with the computation of active Protein Kinase C response in the Protein Kinase C pathway. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The purpose of this article is to study Lipschitz CR mappings from an h-extendible (or semi-regular) hypersurface in . Under various assumptions on the target hypersurface, it is shown that such mappings must be smooth. A rigidity result for proper holomorphic mappings from strongly pseudoconvex domains is also proved.