909 resultados para Panoramic projections. Virtual Environments. Navigation in 3D environments. Virtual Reality
Resumo:
Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2016
Resumo:
Efficient Navigation is essential for the user-acceptance of the Virtual Environments (VEs), but it is also inherently, a difficult task to perform. Resulting research in the area provides users with great variety of navigation assistance in VEs however it is still known to be inadequate, complex and suffers through many limitations. In this paper we discuss the task of navigation in the virtual environments and record the wayfinding assistance currently available for the VEs. The paper introduces taxonomy of navigation and categorizes the aids on basis of the functions performed. The paper provides views on current work performed in the area of non-speech auditory aids. Further we conclude by providing views on the important areas that require further investigation and research.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
This paper presents two tools developed to facilitate the use and automate the process of using Virtual Worlds for educational purposes. The first tool has been developed to automatically create the classroom space, usually called region in the virtual world, which means, a region in the virtual world used to develop educational activities between professors, students and interactive objects. The second tool helps the process of creating 3D interactive objects in a virtual world. With these tools educators will be able to produce 3D interactive learning objects and use them in virtual classrooms improving the quality and appeal, for students, of their classes. © 2011 IEEE.
Resumo:
Identification and tracking of objects in specific environments such as harbors or security areas is a matter of great importance nowadays. With this purpose, numerous systems based on different technologies have been developed, resulting in a great amount of gathered data displayed through a variety of interfaces. Such amount of information has to be evaluated by human operators in order to take the correct decisions, sometimes under highly critical situations demanding both speed and accuracy. In order to face this problem we describe IDT-3D, a platform for identification and tracking of vessels in a harbour environment able to represent fused information in real time using a Virtual Reality application. The effectiveness of using IDT-3D as an integrated surveillance system is currently under evaluation. Preliminary results point to a significant decrease in the times of reaction and decision making of operators facing up a critical situation. Although the current application focus of IDT-3D is quite specific, the results of this research could be extended to the identification and tracking of targets in other controlled environments of interest as coastlines, borders or even urban areas.
Resumo:
This work presents a navigation system for UGVs in large outdoor environments; virtual obstacles are added to the system in order to avoid zones that may present risks to the UGV or the elements in its surroundings. The platform, software architecture and the modifications necessary to handle the virtual obstacles are explained in detail. Several tests have been performed and their results show that the system proposed is capable of performing safe navigation in complex environments.
Resumo:
The aim of this study was to assess the usefulness of virtual environments representing situations that are emotionally significant to subjects with eating disorders (ED). These environments may be applied with both evaluative and therapeutic aims and in simulation procedures to carry out a range of experimental studies. This paper is part of a wider research project analyzing the influence of the situation to which subjects are exposed on their performance on body image estimation tasks. Thirty female patients with eating disorders were exposed to six virtual environments: a living-room (neutral situation), a kitchen with highcalorie food, a kitchen with low-calorie food, a restaurant with high-calorie food, a restaurant with low-calorie food, and a swimming-pool. After exposure to each environment the STAI-S (a measurement of state anxiety) and the CDB (a measurement of depression) were administered to all subjects. The results show that virtual reality instruments are particularly useful for simulating everyday situations that may provoke emotional reactions such as anxiety and depression, in patients with ED. Virtual environments in which subjects are obliged to ingest high-calorie food provoke the highest levels of state anxiety and depression.
Resumo:
In this paper address we the question as to why participants tend to respond realistically to situations and events portrayed within an Immersive Virtual Reality (IVR) system. The idea is put forward, based on experience of a large number of experimental studies, that there are two orthogonal components that contribute to this realistic response. The first is"being there", often called"presence", the qualia of having a sensation of being in a real place. We call this Place Illusion (PI). Second, Plausibility Illusion (Psi) refers to the illusion that the scenario being depicted is actually occurring. In the case of both PI and Psi the participant knows for sure that that they are not"there" and that the events are not occurring. PI is constrained by the sensorimotor contingencies afforded by the virtual reality system. Psi is determined by the extent to which the system can produce events that directly relate to the participant, and the overall credibility of the scenario being depicted in comparison with expectations. We argue that when both PI and Psi occur, participants will respond realistically to the virtual reality.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
Resumo:
It is reported in the literature that distances from the observer are underestimated more in virtual environments (VEs) than in physical world conditions. On the other hand estimation of size in VEs is quite accurate and follows a size-constancy law when rich cues are present. This study investigates how estimation of distance in a CAVETM environment is affected by poor and rich cue conditions, subject experience, and environmental learning when the position of the objects is estimated using an experimental paradigm that exploits size constancy. A group of 18 healthy participants was asked to move a virtual sphere controlled using the wand joystick to the position where they thought a previously-displayed virtual cube (stimulus) had appeared. Real-size physical models of the virtual objects were also presented to the participants as a reference of real physical distance during the trials. An accurate estimation of distance implied that the participants assessed the relative size of sphere and cube correctly. The cube appeared at depths between 0.6 m and 3 m, measured along the depth direction of the CAVE. The task was carried out in two environments: a poor cue one with limited background cues, and a rich cue one with textured background surfaces. It was found that distances were underestimated in both poor and rich cue conditions, with greater underestimation in the poor cue environment. The analysis also indicated that factors such as subject experience and environmental learning were not influential. However, least square fitting of Stevens’ power law indicated a high degree of accuracy during the estimation of object locations. This accuracy was higher than in other studies which were not based on a size-estimation paradigm. Thus as indirect result, this study appears to show that accuracy when estimating egocentric distances may be increased using an experimental method that provides information on the relative size of the objects used.