495 resultados para PROTEROZOIC MICROFOSSILS
Resumo:
The distribution patterns of calcareous dinoflagellate cysts were studied in the classic Cretaceous Tertiary (K-T) boundary section of Stevns Klint, Denmark, focusing mainly on the response of the cyst association to an abrupt environmental catastrophe. A major part of the Fish Clay, which covers the K-T boundary at its base and is exposed in the investigated section, contains fallout produced by an asteroid impact. Calcareous dinoflagenate cysts are the best preserved remains of carbonate-producing phytoplankton in this layer. The potential of this group of microfossils for the analysis of survival strategies and extinction patterns has been underestimated. The cyst species of the investigated section can be grouped into four assemblages that represent victims, survivors, opportunists, and specially adapted forms. The victims (Pithonelloideae) were an extremely successful group throughout the Upper Cretaceous, but were restricted to the narrow outer shelf. This restriction minimized their spatial distribution, which generally should be large to facilitate escape from unfavorable conditions. Spatial restriction optimized the population decrease by mass mortality, disabling a successful recovery. In contrast, the survivors that became the dominating group in the Danian had a wide spatial range from the shelf environment to the oceanic realm. A unique calcareous dinocyst assemblage in the Fish Clay shows that even under the stressed conditions immediately following the impact event, some species flourished due to special adaptation or high ecological tolerance. The ability of these dinoflagellate species to form calcareous resting cysts in combination with their generally wide spatial distribution in a variety of environments appears to be the main reason for a low extinction rate at the K-T boundary as opposed to the high extinction rate of other phytoplankton groups, such as the coccolithophorids.
Resumo:
Laminated sediments deposited under anoxic bottom waters in the Japan Sea during the last glacial maximum (LGM) contain extremely well preserved calcareous microfossils and eolian carbonates. The radiocarbon age-difference between bulk sediment and monospecific planktonic foraminifera in discrete laminae from a core in the southern Japan Sea implies that ~40% of the total carbonates in the sediments at the LGM are of eolian origin. Extrapolation of this result yields a rate of supply of eolian carbonates of ~2800 tons/d to the entire Japan Sea during the LGM. The climatic significance of this flux potentially lies in its broader geographic extension, particularly in the interaction of the carbonate-bearing dust with shallow, corrosive North Pacific waters and with rain in the atmosphere. By increasing the alkalinity of such waters and by enhancing the biological pump the dust flux could have increased CO2 absorption by both the ocean and rain during the LGM.
Resumo:
The Neogene of the southwestern Atlantic is virtually barren of biogenic silica. Of the four sites drilled on Leg 72, only two contained identifiable radiolarian specimens. In the southwestern Brazil Basin (Site 515), radiolarians are present only from the upper Oligocene (Anomaly 8, about 28 Ma) to the middle Miocene (Zone NN8, about 11.5 Ma). On the Rio Grande Rise (Site 516), radiolarians are present only within a short interval of the lower Miocene (Zones N5-N6, about 18-20 Ma). The abrupt cessation of silica deposition in the upper middle Miocene is characteristic of many drill sites in the tropical and temperate Atlantic and implies that a major oceanographic "threshold" was exceeded at this time, allowing the Atlantic waters to become either less productive or relatively silica deficient. Siliceous microfossils are notably more abundant in Oligocene-Miocene sediments of deep regions where carbonate preservation is poor (Site 515) than in equivalent carbonate-rich strata nearby (Site 516). This discrepancy suggests that the presence of calcareous microfossils may act to enhance post-depositional dissolution of biogenic silica tests by elevating the pH of the surrounding pore waters. Carbonate-free clays, by contrast, may provide a more favorable chemical environment for silica preservation.
Resumo:
A standard biostratigraphic system, based upon diatom datum levels previously correlated to the paleomagnetic record, was applied to Deep Sea Drilling Project Sites 501/504 and 505. Sedimentation appears to have been constant at the three sites, averaging 50 m/m.y. at Sites 501/504 and 60 m/m.y. at Site 505. Calcium carbonate is rather poorly preserved at both sites, because of depth of water and, at Sites 501/504, alteration by diagenesis. Siliceous microfossils are common and moderately well preserved at the three sites; at Sites 501/504, diatoms disappear abruptly below the first occurrence of chert. The uppermost Miocene diatom assemblage occurs just above chert and is characterized by a strong dominance of Thalassionema and Thalassiothrix, which implies very high silica production during the latest Miocene; the chert probably is derived from a similar assemblage. In the earliest Pliocene, silica production appears to have decreased sharply; about 3 Ma, preservation of calcium carbonate also diminished, suggesting a shoaling of the CCD. At 2 Ma, there occurred a short interval of low production of both calcium carbonate and silica, which lasted into the earliest Pleistocene.
Resumo:
Late Cretaceous (Maastrichtian)-Quaternary summary biostratigraphies are presented for Ocean Drilling Program (ODP) Leg 189 Sites 1168 (West Tasmanian Margin), 1170 and 1171 (South Tasman Rise), and 1172 (East Tasman Plateau). The age models are calibrated to magnetostratigraphy and integrate both calcareous (planktonic foraminifers and nannofossils) and siliceous (diatoms and radiolarians) microfossil groups with organic walled microfossils (organic walled dinoflagellate cysts, or dinocysts). We also incorporate benthic oxygen isotope stratigraphies into the upper Quaternary parts of the age models for further control. The purpose of this paper is to provide a summary age-depth model for all deep-penetrating sites of Leg 189 incorporating updated shipboard biostratigraphic data with new information obtained during the 3 yr since the cruise. In this respect we provide a report of work to November 2003, not a final synthesis of the biomagnetostratigraphy of Leg 189, yet we present the most complete integrated age model for these sites at this time. Detailed information of the stratigraphy of individual fossil groups, paleomagnetism, and isotope data are presented elsewhere. Ongoing efforts aim toward further integration of age information for Leg 189 sites and will include an attempt to correlate zonation schemes for all the major microfossil groups and detailed correlation between all sites.