942 resultados para Operational analytics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

When patients enter our emergency room with suspected multiple injuries, Statscan provides a full body anterior and lateral image for initial diagnosis, and then zooms in on specific smaller areas for a more detailed evaluation. In order to examine the possible role of Statscan in the management of multiply injured patients we implemented a modified ATLS((R)) algorithm, where X-ray of C-spine, chest and pelvis have been replaced by single-total a.p./lat. body radiograph. Between 15 October 2006 and 1 February 2007 143 trauma patients (mean ISS 15+/-14 (3-75)) were included. We compared the time in resuscitation room to 650 patients (mean ISS 14+/-14 (3-75)) which were treated between 1 January 2002 and 1 January 2004 according to conventional ATLS protocol. The total-body scanning time was 3.5 min (3-6 min) compared to 25.7 (8-48 min) for conventional X-rays, The total ER time was unchanged 28.7 min (13-58 min) compared to 29.1 min (15-65 min) using conventional plain radiography. In 116/143 patients additional CT scans were necessary. In 98/116 full body trauma CT scans were performed. In 18/116 patients selective CT scans were ordered based on Statscan findings. In 43/143 additional conventional X-rays had to be performed, mainly due to inadequate a.p. views of fractured bones. All radiographs were transmitted over the hospital network (Picture Archiving and Communication System, PACS) for immediate simultaneous viewing at different places. The rapid availability of images for interpretation because of their digital nature and the reduced need for repeat exposures because of faulty radiography are also felt to be strengths.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The past decade has seen the energy consumption in servers and Internet Data Centers (IDCs) skyrocket. A recent survey estimated that the worldwide spending on servers and cooling have risen to above $30 billion and is likely to exceed spending on the new server hardware . The rapid rise in energy consumption has posted a serious threat to both energy resources and the environment, which makes green computing not only worthwhile but also necessary. This dissertation intends to tackle the challenges of both reducing the energy consumption of server systems and by reducing the cost for Online Service Providers (OSPs). Two distinct subsystems account for most of IDC’s power: the server system, which accounts for 56% of the total power consumption of an IDC, and the cooling and humidifcation systems, which accounts for about 30% of the total power consumption. The server system dominates the energy consumption of an IDC, and its power draw can vary drastically with data center utilization. In this dissertation, we propose three models to achieve energy effciency in web server clusters: an energy proportional model, an optimal server allocation and frequency adjustment strategy, and a constrained Markov model. The proposed models have combined Dynamic Voltage/Frequency Scaling (DV/FS) and Vary-On, Vary-off (VOVF) mechanisms that work together for more energy savings. Meanwhile, corresponding strategies are proposed to deal with the transition overheads. We further extend server energy management to the IDC’s costs management, helping the OSPs to conserve, manage their own electricity cost, and lower the carbon emissions. We have developed an optimal energy-aware load dispatching strategy that periodically maps more requests to the locations with lower electricity prices. A carbon emission limit is placed, and the volatility of the carbon offset market is also considered. Two energy effcient strategies are applied to the server system and the cooling system respectively. With the rapid development of cloud services, we also carry out research to reduce the server energy in cloud computing environments. In this work, we propose a new live virtual machine (VM) placement scheme that can effectively map VMs to Physical Machines (PMs) with substantial energy savings in a heterogeneous server cluster. A VM/PM mapping probability matrix is constructed, in which each VM request is assigned with a probability running on PMs. The VM/PM mapping probability matrix takes into account resource limitations, VM operation overheads, server reliability as well as energy effciency. The evolution of Internet Data Centers and the increasing demands of web services raise great challenges to improve the energy effciency of IDCs. We also express several potential areas for future research in each chapter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides a brief introduction to the domain of ‘learning analytics’. We first explain the background and idea behind the concept. Then we give a brief overview of current research issues. We briefly list some more controversial issues before concluding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Teaching is a dynamic activity. It can be very effective, if its impact is constantly monitored and adjusted to the demands of changing social contexts and needs of learners. This implies that teachers need to be aware about teaching and learning processes. Moreover, they should constantly question their didactical methods and the learning resources, which they provide to their students. They should reflect if their actions are suitable, and they should regulate their teaching, e.g., by updating learning materials based on new knowledge about learners, or by motivating learners to engage in further learning activities. In the last years, a rising interest in ‘learning analytics’ is observable. This interest is motivated by the availability of massive amounts of educational data. Also, the continuously increasing processing power, and a strong motivation for discovering new information from these pools of educational data, is pushing further developments within the learning analytics research field. Learning analytics could be a method for reflective teaching practice that enables and guides teachers to investigate and evaluate their work in future learning scenarios. However, this potentially positive impact has not yet been sufficiently verified by learning analytics research. Another method that pursues these goals is ‘action research’. Learning analytics promises to initiate action research processes because it facilitates awareness, reflection and regulation of teaching activities analogous to action research. Therefore, this thesis joins both concepts, in order to improve the design of learning analytics tools. Central research question of this thesis are: What are the dimensions of learning analytics in relation to action research, which need to be considered when designing a learning analytics tool? How does a learning analytics dashboard impact the teachers of technology-enhanced university lectures regarding ‘awareness’, ‘reflection’ and ‘action’? Does it initiate action research? Which are central requirements for a learning analytics tool, which pursues such effects? This project followed design-based research principles, in order to answer these research questions. The main contributions are: a theoretical reference model that connects action research and learning analytics, the conceptualization and implementation of a learning analytics tool, a requirements catalogue for useful and usable learning analytics design based on evaluations, a tested procedure for impact analysis, and guidelines for the introduction of learning analytics into higher education.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, learning analytics (LA) has attracted a great deal of attention in technology-enhanced learning (TEL) research as practitioners, institutions, and researchers are increasingly seeing the potential that LA has to shape the future TEL landscape. Generally, LA deals with the development of methods that harness educational data sets to support the learning process. This paper provides a foundation for future research in LA. It provides a systematic overview on this emerging field and its key concepts through a reference model for LA based on four dimensions, namely data, environments, context (what?), stakeholders (who?), objectives (why?), and methods (how?). It further identifies various challenges and research opportunities in the area of LA in relation to each dimension.

Relevância:

20.00% 20.00%

Publicador: