952 resultados para Oclusao vascular mesenterica


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inflammation and TNF-alpha signaling play a central role in most of the pathological conditions where cell transplantation could be applied. As shown by initial experiments, embryonic stem (ES) cells and ES-cell derived vascular cells express very low levels of TNF-alpha receptor I (TNFRp55) and thus do not induce cytokine expression in response to TNF-alpha stimulation. Transient transfection analysis of wild-type or deletion variants of the TNFRp55 gene promoter showed a strong activity for a 250-bp fragment in the upstream region of the gene. This activity was abolished by mutations targeting the Sp1/Sp3 or AP1 binding sites. Moreover, treatment with trichostatin A (TSA) led to a pronounced increase in TNFRp55 mRNA and promoter activity. Overexpression of Sp1 or c-fos further enhanced the TSA-induced luciferase activity, and this response was attenuated by Sp3 or c-jun coexpression. Additional experiments revealed that TSA did not affect the Sp1/Sp3 ratio but caused transcriptional activation of the c-fos gene. Thus, we provide the first evidence that ES and ES-cell-derived vascular cells lack cytokine expression in response to TNF-alpha stimulation due to low levels of c-fos and transcriptional activation of Sp1 that can be regulated by inhibition of histone deacetylase activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Embryonic stem cells possess the ability to differentiate into endothelium. The ability to produce large volumes of endothelium from embryonic stem cells could provide a potential therapeutic modality for vascular injury. We describe an approach that selects endothelial cells using magnetic beads that may be used therapeutically to treat arterial injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stem cells have the ability to differentiate into a variety of cells to replace dead cells or to repair tissue. Recently, accumulating evidence indicates that mechanical forces, cytokines and other factors can influence stem cell differentiation into vascular smooth muscle cells (SMCs). In developmental process, SMCs originate from several sources, which show a great heterogenicity in different vessel walls. In adult vessels, SMCs display a less proliferative nature, but are altered in response to risk factors for atherosclerosis. Traditional view on SMC origins in atherosclerotic lesions is challenged by the recent findings that stem cells and smooth muscle progenitors contribute to the development of atherosclerotic lesions. Vascular progenitor cells circulating in human blood and the presence of adventitia in animals are recent discoveries, but the source of these cells is still unknown. The present review gives an update on the progress of stem cell and SMC research in atherosclerosis, and discusses possible mechanisms of stem/progenitor cell differentiation that contribute to the disease process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE:: To evaluate the occurrence of retinal pigment epithelial atrophy in patients with age-related macular degeneration undergoing anti-vascular endothelial growth factor therapy. METHODS:: The study is a retrospective review. Eligible were patients with age-related macular degeneration and choroidal neovascular membranes treated with anti-vascular endothelial growth factor between October 2007 and February 2011; they were followed for >3 months, with fundus photographs and fluorescein angiography at baseline and with autofluorescence and near-infrared autofluorescence images at baseline and follow-up. Demographics, visual acuity, the type of choroidal neovascular membranes, the number of treatments performed, and the length of follow-up were recorded. Autofluorescence and near-infrared autofluorescence images were evaluated for the presence or absence of areas of reduced signal. A multilevel logistic regression model was used to investigate the factors that may be associated with progression of atrophy at follow-up, which was the primary outcome of this study. RESULTS:: Sixty-three patients (72 eyes) were followed for a median of 16 months (range, 3-36 months). Atrophy at baseline was observed in 47% (34/72) of eyes; progression of atrophy occurred in 62% (45/72) of eyes at the last visit. The number of anti-vascular endothelial growth factor injections received was statistically significantly associated with the progression of atrophy at follow-up (odds ratio, 1.35; 95% confidence interval, 1.05-1.73; P = 0.02). CONCLUSION:: Atrophy was frequently observed in patients with age-related macular degeneration and choroidal neovascular membranes undergoing anti-vascular endothelial growth factor therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE. Vascular endothelial growth factor (VEGF)-A and placental growth factor (PIGF) are members of a large group of homologous peptides identified as the VEGF family. Although VEGF-A is known to act as a potent angiogenic peptide in the retina, the vasoactive function of PIGF in this tissue is less well defined. This study has sought to elucidate the expression patterns and modulatory role of these growth factors during retinal vascular development and hyaloid regression in the neonatal mouse. METHODS. C57BL6J mice were killed at postnatal days (P)1, P3, P5, P7, P9, and P11. The eyes were enucleated and processed for in situ hybridization and immunocytochemistry and the retinas extracted for total protein or RNA. Separate groups of neonatal mice were also injected intraperitoneally daily from P2 through P9 with either VEGF-neutralizing antibody, PIGF-neutralizing antibody, isotype immunoglobulin (Ig)-G, or phosphate-buffered saline (PBS). The mice were then perfused with fluorescein isothiocyanate (FITC)-dextran, and the eyes were subsequently embedded in paraffin wax or flat mounted. RESULTS. Quantitative (real-time) reverse transcription-polymerase chain reaction (RT-PCR) demonstrated similar expression patterns of VEGF-A and PIGF mRNA during neonatal retinal development, although the fluctuation between time periods was greater overall for VEGF-A. The localization of VEGF-A and PIGF in the retina, as revealed by in situ hybridization and immunohistochemistry, was also similar. Neutralization of VEGF-A caused a significant reduction in the hyaloid and retinal vasculature, whereas PIGF antibody treatment caused a marked persistence of the hyaloid without significantly affecting retinal vascular development. CONCLUSIONS. Although having similar expression patterns in the retina, these growth factors appear to have distinct modulatory influences during normal retinal vascular development and hyaloid regression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomarkers are conventionally defined as "biological molecules that represent health and disease states." They typically are measured in readily available body fluids (blood or urine), lie outside the causal pathway, are able to detect subclinical disease, and are used to monitor clinical and subclinical disease burden and response to treatments. Biomarkers can be "direct" endpoints of the disease itself, or "indirect" or surrogate endpoints. New technologies (such as metabolomics, proteomics, genomics) bring a wealth of opportunity to develop new biomarkers. Other new technologies enable the development of nonmolecular, functional, or biophysical tissue-based biomarkers. Diabetes mellitus is a complex disease affecting almost every tissue and organ system, with metabolic ramifications extending far beyond impaired glucose metabolism. Biomarkers may reflect the presence and severity of hyperglycemia (ie, diabetes itself) or the presence and severity of the vascular complications of diabetes. Illustrative examples are considered in this brief review. In blood, hemoglobin A1c (HbA1c) may be considered as a biomarker for the presence and severity of hyperglycemia, implying diabetes or prediabetes, or, over time, as a "biomarker for a risk factor," ie, hyperglycemia as a risk factor for diabetic retinopathy, nephropathy, and other vascular complications of diabetes. In tissues, glycation and oxidative stress resulting from hyperglycemia and dyslipidemia lead to widespread modification of biomolecules by advanced glycation end products (AGEs). Some of these altered species may serve as biomarkers, whereas others may lie in the causal pathway for vascular damage. New noninvasive technologies can detect tissue damage mediated by AGE formation: these include indirect measures such as pulse wave analysis (a marker of vascular dysfunction) and more direct markers such as skin autofluorescence (a marker of long-term accumulation of AGEs). In the future, we can be optimistic that new blood and tissue-based biomarkers will enable the detection, prevention, and treatment of diabetes and its complications long before overt disease develops.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kallistatin, a serpin widely produced throughout the body, has vasodilatory, anti-angiogenic, anti-oxidant, and anti-inflammatory effects. Effects of diabetes and its vascular complications on serum kallistatin levels are unknown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insulin-like growth factor binding protein (IGFBP)-3 modulates vascular development by regulating endothelial progenitor cell (EPC) behavior, specifically stimulating EPC cell migration. This study was undertaken to investigate the mechanism of IGFBP-3 effects on EPC function and how IGFBP-3 mediates cytoprotection following vascular injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To determine the relationships between C-reactive protein (CRP) levels and features of Type 1 diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To determine in Type 1 diabetes patients if levels of pigment epithelium-derived factor (PEDF), an anti-angiogenic, anti-inflammatory and antioxidant factor, are increased in individuals with complications and positively related to vascular and renal dysfunction, body mass index, glycated haemoglobin, lipids, inflammation and oxidative stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The association between poor metabolic control and the microvascular complications of diabetes is now well established, but the relationship between long-term metabolic control and the accelerated atherosclerosis of diabetes is as yet poorly defined. Hyperglycemia is the standard benchmark by which metabolic control is assessed. One mechanism by which elevated glucose levels may mediate vascular injury is through early and advanced glycation reactions affecting a wide variety of target molecules. The "glycation hypothesis'' has developed over the past 30 years, evolving gradually into a "carbonyl stress hypothesis'' and taking into account not only the modification of proteins by glucose, but also the roles of oxidative stress, a wide range of reactive carbonyl-containing intermediates (derived not only from glucose but also from lipids), and a variety of extra- and intracellular target molecules. The final products of these reactions may now be termed "Either Advanced Glycation or Lipoxidation End-Products'' or "EAGLEs.'' The ubiquity of carbonyl stress within the body, the complexity of the reactions involved, the variety of potential carbonyl intermediates and target molecules and their differing half-lives, and the slow development of the complications of diabetes all pose major challenges in dissecting the significance of these processes. The extent of the reactions tends to correlate with overall metabolic control, creating pitfalls in the interpretation of associative data. Many animal and cell culture studies, while supporting the hypothesis, must be viewed with caution in terms of relevance to human diabetes. In this article, the development of the carbonyl stress hypothesis is reviewed, and implications for present and future treatments to prevent complications are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high concentration of circulating low-density lipoproteins (LDL) is a major risk factor for atherosclerosis. Native LDL and LDL modified by glycation and/or oxidation are increased in diabetic individuals. LDL directly stimulate vascular smooth muscle cell (VSMC) proliferation; however, the mechanisms remain undefined. The extracellular signal-regulated kinase (ERK) pathway mediates changes in cell function and growth. Therefore, we examined the cellular effects of native and modified LDL on ERK phosphorylation in VSMC. Addition of native, mildly modified (oxidized, glycated, glycoxidized) and highly modified (highly oxidized, highly glycoxidized) LDL at 25 microg/ml to rat VSMC for 5 min induced a fivefold increase in ERK phosphorylation. To elucidate the signal transduction pathway by which LDL phosphorylate ERK, we examined the roles of the Ca(2+)/calmodulin pathway, protein kinase C (PKC), src kinase, and mitogen-activated protein kinase kinase (MEK). Treatment of VSMC with the intracellular Ca(2+) chelator EGTA-AM (50 micromol/l) significantly increased ERK phosphorylation induced by native and mildly modified LDL, whereas chelation of extracellular Ca(2+) by EGTA (3 mmol/l) significantly reduced LDL-induced ERK phosphorylation. The calmodulin inhibitor N-(6-aminohexyl)-1-naphthalenesulfonamide (40 micromol/l) significantly decreased ERK phosphorylation induced by all types of LDL. Downregulation of PKC with phorbol myristate acetate (5 micromol/l) markedly reduced LDL-induced ERK phosphorylation. Pretreatment of VSMC with a cell-permeable MEK inhibitor (PD-98059, 40 micromol/l) significantly decreased ERK phosphorylation in response to native and modified LDL. These findings indicate that native and mildly and highly modified LDL utilize similar signaling pathways to phosphorylate ERK and implicate a role for Ca(2+)/calmodulin, PKC, and MEK. These results suggest a potential link between modified LDL, vascular function, and the development of atherosclerosis in diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sirolimus-eluting stent therapy has achieved considerable success in overcoming coronary artery restenosis. However, there remain a large number of patients presenting with restenosis after the treatment, and the source of its persistence remains unclarified. Although recent evidence supports the contribution of vascular stem/progenitor cells in restenosis formation, their functional and molecular responses to sirolimus are largely unknown.