944 resultados para ONE-DIMENSIONAL MAPS
Resumo:
We consider a new type of point interaction in one-dimensional quantum mechanics. It is characterized by a boundary condition at the origin that involves the second and/or higher order derivatives of the wavefunction. The interaction is effectively energy dependent. It leads to a unitary S-matrix for the transmission-reflection problem. The energy dependence of the interaction can be chosen such that any given unitary S-matrix (or the transmission and reflection coefficients) can be reproduced at all energies. Generalization of the results to coupled-channel cases is discussed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The (2 + 1)-dimensional Burgers equation is obtained as the equation of motion governing the surface perturbations of a shallow viscous fluid heated from below, provided the Rayleigh number of the system satisfies the condition R not-equal 30. A solution to this equation is explicitly exhibited and it is argued that it describes the nonlinear evolution of a nearly one-dimensional kink.
Resumo:
We investigate a dilute mixture of bosons and spin-polarized fermions in one dimension. With an attractive Bose-Fermi scattering length the ground state is a self-bound droplet, i.e., a Bose-Fermi bright soliton where the Bose and Fermi clouds are superimposed. We find that the quantum fluctuations stabilize the Bose-Fermi soliton such that the one-dimensional bright soliton exists for any finite attractive Bose-Fermi scattering length. We study density profile and collective excitations of the atomic bright soliton showing that they depend on the bosonic regime involved: mean-field or Tonks-Girardeau.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this paper we consider a three-dimensional heat diffusion model to explain the growth of oxide films which takes place when a laser beam is shined on and heats a metallic layer deposited on a glass substrate in a normal atmospheric environment. In particular, we apply this model to the experimental results obtained for the dependence of the oxide layer thickness on the laser density power for growth of TiO2 films grown on Ti-covered glass slides. We show that there is a very good agreement between the experimental results and the theoretical predictions from our proposed three-dimensional model, improving the results obtained with the one-dimensional heat diffusion model previously reported. Our theoretical results also show the occurrence of surface cooling between consecutive laser pulses, and that the oxide track surface profile closely follows the spatial laser profile indicating that heat diffusive effects can be neglected in the growth of oxide films by laser heating. © 2001 Elsevier Science B.V.
Resumo:
In this article, we investigate the geometry of quasi homogeneous corank one finitely determined map germs from (ℂn+1, 0) to (ℂn, 0) with n = 2, 3. We give a complete description, in terms of the weights and degrees, of the invariants that are associated to all stable singularities which appear in the discriminant of such map germs. The first class of invariants which we study are the isolated singularities, called 0-stable singularities because they are the 0-dimensional singularities. First, we give a formula to compute the number of An points which appear in any stable deformation of a quasi homogeneous co-rank one map germ from (ℂn+1, 0) to (ℂn, 0) with n = 2, 3. To get such a formula, we apply the Hilbert's syzygy theorem to determine the graded free resolution given by the syzygy modules of the associated iterated Jacobian ideal. Then we show how to obtain the other 0-stable singularities, these isolated singularities are formed by multiple points and here we use the relation among them and the Fitting ideals of the discriminant. For n = 2, there exists only the germ of double points set and for n = 3 there are the triple points, named points A1,1,1 and the normal crossing between a germ of a cuspidal edge and a germ of a plane, named A2,1. For n = 3, there appear also the one-dimensional singularities, which are of two types: germs of cuspidal edges or germs of double points curves. For these singularities, we show how to compute the polar multiplicities and also the local Euler obstruction at the origin in terms of the weights and degrees. © 2013 Pushpa Publishing House.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Civil - FEIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We propose a novel method to calculate the electronic Density of States (DOS) of a two dimensional disordered binary alloy. The method is highly reliable and numerically efficient, and Short Range Order (SRO) correlations can be included with no extra computational cost. The approach devised rests on one dimensional calculations and is applied to very long stripes of finite width, the bulk regime being achieved with a relatively small number of chains in the disordered case. Our approach is exact for the pure case and predicts the correct DOS structure in important limits, such as the segregated, random, and ordered alloy regimes. We also suggest important extensions of the present work. © 1995.
Resumo:
The accurate electron density distribution and magnetic properties of two metal-organic polymeric magnets, the quasi-one-dimensional (1D) Cu(pyz)(NO3)2 and the quasi-two-dimensional (2D) [Cu(pyz)2(NO3)]NO3·H2O, have been investigated by high-resolution single-crystal X-ray diffraction and density functional theory calculations on the whole periodic systems and on selected fragments. Topological analyses, based on quantum theory of atoms in molecules, enabled the characterization of possible magnetic exchange pathways and the establishment of relationships between the electron (charge and spin) densities and the exchange-coupling constants. In both compounds, the experimentally observed antiferromagnetic coupling can be quantitatively explained by the Cu-Cu superexchange pathway mediated by the pyrazine bridging ligands, via a σ-type interaction. From topological analyses of experimental charge-density data, we show for the first time that the pyrazine tilt angle does not play a role in determining the strength of the magnetic interaction. Taken in combination with molecular orbital analysis and spin density calculations, we find a synergistic relationship between spin delocalization and spin polarization mechanisms and that both determine the bulk magnetic behavior of these Cu(II)-pyz coordination polymers.
Resumo:
The interactions employed in the “linear” reaction A(g)+BC(g) -> AB(g) + C(g) in a “one dimensional world” can be used to illustrate the “reaction coördinate”, using Maple, in a manner which allows students to inspect potential energy surfaces, make contour maps of those surfaces, and conceptually construct the “reaction coördinate” by tracing the local minimum path on the surface created.“one dimensional world” can be used to illustrate the “reaction coördinate”, using Maple, in a manner which allows students to inspect potential energy surfaces, make contour maps of those surfaces, and conceptually construct the “reaction coördinate” by tracing the local minimum path on the surface created.
Resumo:
This paper is concerned with the low dimensional structure of optimal streaks in a wedge flow boundary layer, which have been recently shown to consist of a unique (up to a constant factor) three-dimensional streamwise evolving mode, known as the most unstable streaky mode. Optimal streaks exhibit a still unexplored/unexploited approximate self-similarity (not associated with the boundary layer self-similarity), namely the streamwise velocity re-scaled with their maximum remains almost independent of both the spanwise wavenumber and the streamwise coordinate; the remaining two velocity components instead do not satisfy this property. The approximate self-similar behavior is analyzed here and exploited to further simplify the description of optimal streaks. In particular, it is shown that streaks can be approximately described in terms of the streamwise evolution of the scalar amplitudes of just three one-dimensional modes, providing the wall normal profiles of the streamwise velocity and two combinations of the cross flow velocity components; the scalar amplitudes obey a singular system of three ordinary differential equations (involving only two degrees of freedom), which approximates well the streamwise evolution of the general streaks.