967 resultados para Nuclear energy.
Resumo:
The coupled heat, air and moisture transfer between building envelopes and indoor air is complicated, and has a significant influence on the indoor environment and the energy performance of buildings. In the paper, a model for predicting coupled multi-zone hygrothermal-airflow transfer is presented. Both heat and moisture transfer in the building envelope and multi-zone indoor airflow are simultaneously considered; their interactions are modeled. The coupled system model is implemented into Matlab–Simulink, and is validated by using a series of testing tools and experiments. The new program is applied to investigate the moisture transfer effect on indoor air humidity and building energy consumption in different climates (hot-humid, temperate and hot-dry climates). The results show that not accounting for hygrothermal effects in modeling will result in overestimation of energy costs for hot and humid climate situations and possible over sizing of plant leading to inefficient operation.
Resumo:
The localized deposition of the energy of a laser pulse, as it ablates a solid target, introduces high thermal pressure gradients in the plasma. The thermal expansion of this laser-heated plasma into the ambient medium (ionized residual gas) triggers the formation of non-linear structures in the collisionless plasma. Here an electron-proton plasma is modelled with a particle-in-cell simulation to reproduce aspects of this plasma expansion. A jump is introduced in the thermal pressure of the plasma, across which the otherwise spatially uniform temperature and density change by a factor of 100. The electrons from the hot plasma expand into the cold one and the charge imbalance drags a beam of cold electrons into the hot plasma. This double layer reduces the electron temperature gradient. The presence of the low-pressure plasma modifies the proton dynamics compared with the plasma expansion into a vacuum. The jump in the thermal pressure develops into a primary shock. The fast protons, which move from the hot into the cold plasma in the form of a beam, give rise to the formation of phase space holes in the electron and proton distributions. The proton phase space holes develop into a secondary shock that thermalizes the beam.
Resumo:
The self-compression of a relativistic Gaussian laser pulse propagating in a non-uniform plasma is investigated. A linear density inhomogeneity (density ramp) is assumed in the axial direction. The nonlinear Schrodinger equation is first solved within a one-dimensional geometry by using the paraxial formalism to demonstrate the occurrence of longitudinal pulse compression and the associated increase in intensity. Both longitudinal and transverse self-compression in plasma is examined for a finite extent Gaussian laser pulse. A pair of appropriate trial functions, for the beam width parameter (in space) and the pulse width parameter (in time) are defined and the corresponding equations of space and time evolution are derived. A numerical investigation shows that inhomogeneity in the plasma can further boost the compression mechanism and localize the pulse intensity, in comparison with a homogeneous plasma. A 100 fs pulse is compressed in an inhomogeneous plasma medium by more than ten times. Our findings indicate the possibility for the generation of particularly intense and short pulses, with relevance to the future development of tabletop high-power ultrashort laser pulse based particle acceleration devices and associated high harmonic generation. An extension of the model is proposed to investigate relativistic laser pulse compression in magnetized plasmas.
Resumo:
The study of non-Maxwellian plasmas is crucial to the understanding of space and astrophysical plasma dynamics. In this paper, we investigate the existence of arbitrary amplitude ion-acoustic solitary waves in an unmagnetized plasma consisting of ions and excess superthermal electrons (modelled by a kappa-type distribution), which is penetrated by an electron beam. A kappa (kappa-) type distribution is assumed for the background electrons. A (Sagdeev-type) pseudopotential formalism is employed to derive an energy-balance like equation. The range of allowed values of the soliton speed (Mach number), wherein solitary waves may exist, is determined. The Mach number range (allowed soliton speed values) becomes narrower under the combined effect of the electron beam and of the superthermal electrons, and may even be reduced to nil (predicting no solitary wave existence) for high enough beam density and low enough kappa (significant superthermality). For fixed values of all other parameters (Mach number, electron beam-to-ion density ratio and electron beam velocity), both soliton amplitude and (electric potential perturbation) profile steepness increase as kappa decreases. The combined occurrence of small-amplitude negative potential structures and larger amplitude positive ones is pointed out, while the dependence of either type on the plasma parameters is investigated.
Resumo:
The problem of the 'hole-boring' (HB)-type of radiation pressure acceleration of ions by circularly polarized laser pulses interacting with overdense plasmas is considered in the regime where the dimensionless scaling parameter I/rho c(3) becomes large. In this regime a non-relativistic treatment of the 'HB' problem is no longer adequate. A new set of fully relativistic formulae for the mean ion energy and 'HB' velocity is derived and validated against one-dimensional particle-in-cell simulations. It is also found that the finite acceleration time of the ions results in large energy spreads in the accelerated ion beam even under the highly idealized conditions of constant laser intensity and uniform mass density.
Resumo:
Two nitride-strengthened reduced activation ferritic/martensitic (RAFM) steels with different Mn contents were investigated. The experimental steels were designed based on the chemical composition of Eurofer 97 steel but the C content was reduced to an extremely low level. Microstructure observation and hardness tests showed that the steel with low Mn content (0.47 wt.%) could not obtain a full martensitic microstructure due to the inevitable δ-ferrite independent of cooling rate after soaking. This steel showed similar room temperature strength and higher strength at 600 °C, but lower impact toughness, compared with Eurofer 97 steel. Fractography of the Charpy impact specimen revealed that the low room temperature toughness should be related to the Ta-rich inclusions initiating the cleavage fracture. The larger amount of V-rich nitrides and more dissolved Cr in the matrix could be responsible for the strength being similar to Eurofer 97 steel. In the second steel developed from the first steel by increasing the Mn content from 0.47 wt.% to 3.73 wt.%, a microstructure of full martensite could be obtained.
Resumo:
The nonlinear dynamics of electrostatic solitary waves in the form of localized modulated wavepackets is investigated from first principles. Electron-acoustic (EA) excitations are considered in a two-electron plasma, via a fluid formulation. The plasma, assumed to be collisionless and uniform (unmagnetized), is composed of two types of electrons (inertial cold electrons and inertialess kappa-distributed superthermal electrons) and stationary ions. By making use of a multiscale perturbation technique, a nonlinear Schrodinger equation is derived for the modulated envelope, relying on which the occurrence of modulational instability (MI) is investigated in detail. Stationary profile localized EA excitations may exist, in the form of bright solitons (envelope pulses) or dark envelopes (voids). The presence of superthermal electrons modifies the conditions for MI to occur, as well as the associated threshold and growth rate. The concentration of superthermal electrons (i.e., the deviation from a Maxwellian electron distribution) may control or even suppress MI. Furthermore, superthermality affects the characteristics of solitary envelope structures, both qualitatively (supporting one or the other type, for different.) and quantitatively, changing their characteristics (width, amplitude). The stability of bright and dark-type nonlinear structures is confirmed by numerical simulations.
Resumo:
The use of ionic liquid (IL) electrolytes promises to improve the energy density of electrochemical capacitors (ECs) by allowing for operation at higher voltages. Several studies have also shown that the pore size distribution of materials used to produce electrodes is an important factor in determining EC performance. In this research the capacitative, energy and power performance of ILs 1-ethyl-3- methylimidazolium tetrafluoroborate (EMImBF4), 1-ethyl-3-methylimidazolium dicyanamide (EMImN(CN)2), 1,2-dimethyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide (DMPImTFSI), and 1-butyl-3-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate (BMPyT(F5Et)PF3) were studied and compared with the commercially utilised organic electrolyte 1M tetraethylammonium tetrafluoroborate solution in anhydrous propylene carbonate (Et4NBF4–PC 1 M). To assess the effect of pore size on IL performance, controlled porosity carbons were produced from phenolic resins activated in CO2. The carbon samples were characterised by nitrogen adsorption– desorption at 77 K and the relevant electrochemical behaviour was characterised by cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance spectroscopy. The best capacitance performance was obtained for the activated carbon xerogel with average pore diameter 3.5 nm, whereas the optimum rate performance was obtained for the activated carbon xerogel with average pore diameter 6 nm. When combined in an EC with IL electrolyte EMImBF4 a specific capacitance of 210 F g1 was obtained for activated carbon sample with average pore diameter 3.5 nm at an operating voltage of 3 V. The activated carbon sample with average pore diameter 6 nm allowed for maximum capacitance retention of approximately 70% at 64 mA cm2.
Resumo:
We have demonstrated the promising radiation pressure acceleration (RPA) mechanism of laser-driven ion acceleration at currently achievable laser and target parameters through a large number of two-dimensional particle-in-cell simulations and experiments. High-density monoenergetic ion beams with unprecedented qualities such as narrow-peaked spectrum, lower-divergence and faster energy-scaling are obtained, compared with the conventional target normal sheath acceleration. The key condition for stable RPA from thin foils by intense circularly polarized lasers has been identified, under which the stable RPA regime can be extended from ultrahigh intensities > 10(22) W cm(-2) to a currently accessible range 10(20)-10(21) W cm(-2). The dependences of the RPA mechanism on laser polarization, intensity and on the target composition and areal density have been studied.
Resumo:
The transverse filamentation of beams of fast electrons transported in solid targets irradiated by ultraintense (5 x 10(20) W cm(-2)), picosecond laser pulses is investigated experimentally. Filamentation is diagnosed by measuring the uniformity of a beam of multi-MeV protons accelerated by the sheath field formed by the arrival of the fast electrons at the rear of the target, and is investigated for metallic and insulator targets ranging in thickness from 50 to 1200 mu m. By developing an analytical model, the effects of lateral expansion of electron beam filaments in the sheath during the proton acceleration process is shown to account for measured increases in proton beam nonuniformity with target thickness for the insulating targets.
Resumo:
A description of the radiation emitted by impurities from within a plasma is crucial if spectral line intensities are to be used in detailed studies, such as the analysis of impurity transport. The simplest and most direct check that can be made on measurements of line intensities is to analyse their ratios with other lines from the same ion. This avoids uncertainties in determining the volume of the emitting plasma and the absolute sensitivity calibration of the spectrometer and, in some cases, the need even for accurate measurements of parameters such as electron density. Consistency is required between the measured line intensity ratios and the theoretical values. The expected consistency has not been found for radiation emitted from the JET scrape-off layer (e.g. Lawson et al 2009a JINST 4 P04013), meaning that the description of the spectral line intensities of impurity emission from the plasma edge is incomplete. In order to gain further understanding of the discrepancies, an analysis has been carried out for emission from the JET divertor plasma and this is reported in this paper. Carbon was the main low Z intrinsic impurity in JET and an analysis of spectral line intensity ratios has been made for the C (IV) radiation emitted from the JET divertor. In this case, agreement is found between the measured and theoretical ratios to a very high accuracy, namely to within the experimental uncertainty of similar to +/- 10%. This confirms that the description of the line intensities for the present observations is complete. For some elements and ionization stages, an analysis of line intensity ratios can lead to the determination of parameters such as the electron temperature of the emitting plasma region and estimates of the contribution of recombination to the electron energy level populations. This applies to C (IV) and, to show the value and possibilities of the spectral measurements, these parameters have been calculated for a database of Ohmic and additionally heated phases of a large number of pulses. The importance of dielectronic, radiative and charge-exchange recombination as well as ionization has been investigated. In addition, the development of T-e throughout two example discharges is illustrated. The presented results indicate a number of areas for further investigation.
Resumo:
Purpose: To measure hypoxic chemical fixation processes of radiation damage in both isolated plasmid DNA and in GSH-depleted E. coli cells.
Resumo:
Purpose: This short review summarizes the data obtained with various techniques for measuring the yields of double strand breaks (dsb) produced by particle radiations of differing linear energy transfer (LET) in order to obtain relative biological effectiveness (RBE) values.