1000 resultados para Northern Saskatchewan


Relevância:

20.00% 20.00%

Publicador:

Resumo:

keywords: Enlightenment, Northern countries, Finland, Russia, Scotland In the 36 th edition of the almanac "Philosophical Age" published materials of international symposium «The Northern Lights - Facets of Enlightenment Culture», (held September 25-26, 2009) in The Aleksanteri Institute the University of Helsinki. Contents: Vesa Oittinen Between Radicalism and Utilitarianism — On the Profile of the Finnish Enlightenment Tatiana Artemyeva The Status of Intellectual Values in the Russian Enlightenment Oili Pulkkinen The Cosmopolitan Experience, Theoretical Histories and the Universal Science of the Scottish Enlightenment Аlla Zlatopolskaya L’autocritique des Lumières chez Rousseau et le rousseauisme russe Johannes Remy Alexander Radishchev, Ethical Consuming, and North American Quakers Kimmo Sarje Anders Chydenius and Radical Swedish Enlightenment Johan Sten Anders Johan Lexell: A Finnish Astronomer at St. Petersburg Academy of Sciences and His European Contacts Mikhail Mikeshin A Russian Adam Smith in French Style: An Example of the Transfer of Ideas Larisa Agamalian The Library of an Enlightened Russian Landowner

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesoscale weather phenomena, such as the sea breeze circulation or lake effect snow bands, are typically too large to be observed at one point, yet too small to be caught in a traditional network of weather stations. Hence, the weather radar is one of the best tools for observing, analyzing and understanding their behavior and development. A weather radar network is a complex system, which has many structural and technical features to be tuned, from the location of each radar to the number of pulses averaged in the signal processing. These design parameters have no universal optimal values, but their selection depends on the nature of the weather phenomena to be monitored as well as on the applications for which the data will be used. The priorities and critical values are different for forest fire forecasting, aviation weather service or the planning of snow ploughing, to name a few radar-based applications. The main objective of the work performed within this thesis has been to combine knowledge of technical properties of the radar systems and our understanding of weather conditions in order to produce better applications able to efficiently support decision making in service duties for modern society related to weather and safety in northern conditions. When a new application is developed, it must be tested against ground truth . Two new verification approaches for radar-based hail estimates are introduced in this thesis. For mesoscale applications, finding the representative reference can be challenging since these phenomena are by definition difficult to catch with surface observations. Hence, almost any valuable information, which can be distilled from unconventional data sources such as newspapers and holiday shots is welcome. However, as important as getting data is to obtain estimates of data quality, and to judge to what extent the two disparate information sources can be compared. The presented new applications do not rely on radar data alone, but ingest information from auxiliary sources such as temperature fields. The author concludes that in the future the radar will continue to be a key source of data and information especially when used together in an effective way with other meteorological data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Winter is a significant period for the seasonality of northern plants, but is often overlooked when studying the interactions of plants and their environment. This study focuses on the effects of overwintering conditions, including warm winter periods, snow, and snowmelt on boreal and sub-Arctic field layer plants. Wintertime photosynthesis and related physiological factors of evergreen dwarf shrubs, particularly of Vaccinium vitis-idaea, are emphasised. The work combines experiments both in the field and in growth chambers with measurements in natural field conditions. Evergreen dwarf shrubs are predominantly covered by snow in the winter. The protective snow cover provides favourable conditions for photosynthesis, especially during the spring before snowmelt. The results of this study indicate that photosynthesis occurs under the snow in V. vitis-idaea. The light response of photosynthesis determined in field conditions during the period of snow cover shows that positive net CO2 exchange is possible under the snow in the prevailing light and temperature. Photosynthetic capacity increases readily during warm periods in winter and the plants are thus able to replenish carbohydrate reserves lost through respiration. Exposure to low temperatures in combination with high light following early snowmelt can set back photosynthesis as sustained photoprotective measures are activated and photodamage begins to build up. Freezing may further decrease the photosynthetic capacity. The small-scale distribution of many field layer plants, including V. vitis-idaea and other dwarf shrubs, correlates with the snow distribution in a forest. The results of this study indicate that there are species-specific differences in the snow depth affinity of the field and ground layer species. Events and processes taking place in winter can have a profound effect on the overall performance of plants and on the interactions between plants and their environment. Understanding the processes involved in the overwintering of plants is increasingly important as the wintertime climate in the north is predicted to change in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT The Baltic Sea is a vulnerable ecosystem currently undergoing a number of changes, both natural and human induced. The changes are likely to affect the species found on these shores, e.g. their distribution and interactions with other species. Blue mussels (Mytilus trossulus x Mytilus edulis) provide one of the main biogenic hard structures on the shallow shores of the Baltic Sea where they aggregate into dense beds and provide a number of resources for over 40 associated macrofaunal species, thus functioning as ecosystem engineers. The blue mussel, being a marine species, is highly likely to be affected by any changes in sea water salinity, circulation and/or water balance. These changes could trickle down also to affect the associated macrofaunal communities. The aims of this thesis were three-fold: first, I examined and described the macrofaunal communities found within blue mussel patches since the fauna associated with mussel patches had never been described in the study area prior to this thesis. Second, I explored how changes in mussel density, size as well as patch size and shape would affect the mussel communities. Finally, I tested how general landscape theories derived from terrestrial studies function in blue mussel systems. Theories included the structural heterogeneity hypothesis, species-area relationships, edge effects and patch isolation effects. The work shows that blue mussels in the northern Baltic Sea have an indisputable function as diversity hotspots and that the faunal assemblages found in mussel patches are extremely rich and unique. Further on, it shows that changes in mussel biomass, size, patch size and amount of edge have the potential to alter the faunal assemblages and diversity within patches. Finally, it shows that although some landscape theories, such as the structural heterogeneity hypothesis, seem to apply also in blue mussel communities, others cannot be directly applied due to the different prevailing conditions in the study system. This is a pioneering work looking at diversity shaping processes on the rocky shores of the Gulf of Finland, making up over 40% of the total water basin. A focus on niche construction, positive facilitation effects and ecosystem engineering could provide new insights and methods for conservation biology, but before this can be done, we need to fully understand the circumstances under which a species becomes an ecosystem engineer and recognize the systems in which it functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comparison of microsite occupancy and the spatial structure of regeneration in three areas of late-successional Norway spruce dominated forest. Pallas-Ylläs is understood to have been influenced only by small-scale disturbance; Dvina-Pinega has had sporadic larger-scale disturbances; Kazkim has been affected by fire. All spruce and birch trees with diameter at breast height (DBH) ?10 cm were mapped in five stands on 40 m x 400 m transects, and those with DBH < 10 cm on 2 or 4 m x 400 m subplots. Microsite type was inventoried at 1m intervals along the centre line and for each tree with DBH < 10 cm. At all study areas small seedlings (h < 0.3 m, DBH < 10 cm) preferentially occupied disturbed microsites. In contrast, spruce saplings (h ? 1.3 m, DBH <10 cm) at all study areas showed less, or no, preference. At Pallas-Ylläs spruce seedlings (h < 1.3 m, DBH < 10 cm) and saplings (h ? 1.3 m, DBH < 10 cm) exhibited spatial correlation at scales from 32-52 m. At Dvina-Pinega saplings of both spruce and birch exhibited spatial correlation at scales from 32-81 m. At Kazkim spatial correlation of seedlings and saplings of both species was exhibited over variable distances. No spatial cross-correlation was found between overstorey basal area (DBH ? 10 cm) and regeneration (h ? 1.3 m, DBH < 10 cm) at any study area. The results confirm the importance of disturbed microsites for seedling establishment, but suggest that undisturbed microsites may sometimes be more advantageous for long-term tree survival. The regeneration gap concept may not be useful in describing the regeneration dynamics of late-successional boreal forests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thunderstorm is a dangerous electrical phenomena in the atmosphere. Thundercloud is formed when thermal energy is transported rapidly upwards in convective updraughts. Electrification occurs in the collisions of cloud particles in the strong updraught. When the amount of charge in the cloud is large enough, electrical breakdown, better known as a flash, occurs. Lightning location is nowadays an essential tool for the detection of severe weather. Located flashes indicate in real time the movement of hazardous areas and the intensity of lightning activity. Also, an estimate for the flash peak current can be determined. The observations can be used in damage surveys. The most simple way to represent lightning data is to plot the locations on a map, but the data can be processed in more complex end-products and exploited in data fusion. Lightning data serves as an important tool also in the research of lightning-related phenomena, such as Transient Luminous Events. Most of the global thunderstorms occur in areas with plenty of heat, moisture and tropospheric instability, for example in the tropical land areas. In higher latitudes like in Finland, the thunderstorm season is practically restricted to the summer season. Particular feature of the high-latitude climatology is the large annual variation, which regards also thunderstorms. Knowing the performance of any measuring device is important because it affects the accuracy of the end-products. In lightning location systems, the detection efficiency means the ratio between located and actually occurred flashes. Because in practice it is impossible to know the true number of actually occurred flashes, the detection efficiency has to be esimated with theoretical methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Endemic northern malaria reached 68°N latitude in Europe during the 19th century, where the summer mean temperature only irregularly exceeded 16°C, the lower limit needed for sporogony of Plasmodium vivax. Because of the available historical material and little use of quinine, Finland was suitable for an analysis of endemic malaria and temperature. Methods: Annual malaria death frequencies during 1800–1870 extracted from parish records were analysed against long-term temperature records in Finland, Russia and Sweden. Supporting data from 1750–1799 were used in the interpretation of the results. The life cycle and behaviour of the anopheline mosquitoes were interpreted according to the literature. Results: Malaria frequencies correlated strongly with the mean temperature of June and July of the preceding summer, corresponding to larval development of the vector. Hatching of imagoes peaks in the middle of August, when the temperature most years is too low for the sporogony of Plasmodium. After mating some of the females hibernate in human dwellings. If the female gets gametocytes from infective humans, the development of Plasmodium can only continue indoors, in heated buildings. Conclusion: Northern malaria existed in a cold climate by means of summer dormancy of hypnozoites in humans and indoor transmission of sporozoites throughout the winter by semiactive hibernating mosquitoes. Variable climatic conditions did not affect this relationship. The epidemics, however, were regulated by the population size of the mosquitoes which, in turn, ultimately was controlled by the temperatures of the preceding summer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estuaries have been suggested to have an important role in reducing the nitrogen load transported to the sea. We measured denitrification rates in six estuaries of the northern Baltic Sea. Four of them were river mouths in the Bothnian Bay (northern Gulf of Bothnia), and two were estuary bays, one in the Archipelago Sea (southern Gulf of Bothnia) and the other in the Gulf of Finland. Denitrification rates in the four river mouths varied between 330 and 905 mu mol N m(-2) d(-1). The estuary bays at the Archipelago Sea and the Gulf of Bothnia had denitrification rates from 90 mu mol N m(-2) d(-1) to 910 mu mol N m(-2) d(-1) and from 230 mu mol N m(-2) d(-1) to 320 mu mol N m(-2) d(-1), respectively. Denitrification removed 3.6-9.0% of the total nitrogen loading in the river mouths and in the estuary bay in the Gulf of Finland, where the residence times were short. In the estuary bay with a long residence time, in the Archipelago Sea, up to 4.5% of nitrate loading and 19% of nitrogen loading were removed before entering the sea. According to our results, the sediments of the fast-flowing rivers and them estuary areas with short residence times have a limited capacity to reduce the nitrogen load to the Baltic Sea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Malabar Pied Hornbill, Anthracoceros coronatus, is a near threatened species, endemic to the tropical deciduous forests of central and southern India and Sri Lanka. The Dandeli region in Karnataka (India) is believed to be the last stronghold of this species in the Western Ghats biodiversity hotspot. Being a rapidly developing area with a growing human population, the threats to this species and their habitat are mounting, especially due to a large number of hydroelectric projects and habitat fragmentation caused by paper and plywood industries. This study evaluated the change in population status of the Malabar Pied Hornbill over a 23 year period and defined priorities for the long term conservation and monitoring of hornbills in Dandeli. Encounter rates of hornbills were also analysed in relation to the density and species richness of trees and fruiting trees, basal area, canopy cover and distance from river. Hornbill encounters were not significantly different compared to the earlier study carried out by Reddy in 1988, but were significantly different across the five sites in the current study. Higher numbers of hornbills were encountered closer to the river, but these results were only marginally significant. The mean numbers of hornbills recorded at the two roost sites identified in Dandeli were 26 +/- 4.47 (n=16 counts) and 31.78 +/- 3.53 (n=14 counts) respectively. The study also helped build local awareness about the species, train local Forest Department staff in monitoring hornbills and develop a management plan for its conservation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influences of the springtime northern Indian biomass burning are shown for the first time over the central Himalayas by using three years (2007-2009) of surface and space based observations along with a radiative transfer model. Near-surface ozone, black carbon (BC), spectral aerosol optical depths (AODs) and the meteorological parameters are measured at a high altitude site Nainital (29.37 degrees N, 79.45 degrees E, 1958 m amsl) located in the central Himalayas. The satellite observations include the MODIS derived fire counts and AOD (0.55 mu m), and OMI derived tropospheric column NO(2), ultraviolet aerosol index and single scattering albedo. MODIS fire counts and BC observations are used to identify the fire-impacted periods (372 h during 2007-2009) and hence the induced enhancements in surface BC, AOD (0.5 mu m) and ozone are estimated to be 1802 ng m(-3) (similar to 145%), 0.3 (similar to 150%) and 19 ppbv (similar to 34%) respectively. Large enhancements (53-100%) are also seen in the satellite derived parameters over a 2 degrees x 2 degrees region around Nainital. The present analysis highlights the northern Indian biomass burning induced cooling at the surface (-27 W m(-2)) and top of the atmosphere (-8 W m(-2)) in the lesser polluted high altitude regions of the central Himalayas. This cooling leads to an additional atmospheric warming of 19 W m(-2) and increases the lower atmospheric heating rate by 0.8 K day(-1). These biomass burning induced changes over the central Himalayan atmosphere during spring may also lead to enhanced short-wave absorption above clouds and might have an impact on the monsoonal rainfall.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During summer, the northern Indian Ocean exhibits significant atmospheric intraseasonal variability associated with active and break phases of the monsoon in the 30-90 days band. In this paper, we investigate mechanisms of the Sea Surface Temperature (SST) signature of this atmospheric variability, using a combination of observational datasets and Ocean General Circulation Model sensitivity experiments. In addition to the previously-reported intraseasonal SST signature in the Bay of Bengal, observations show clear SST signals in the Arabian Sea related to the active/break cycle of the monsoon. As the atmospheric intraseasonal oscillation moves northward, SST variations appear first at the southern tip of India (day 0), then in the Somali upwelling region (day 10), northern Bay of Bengal (day 19) and finally in the Oman upwelling region (day 23). The Bay of Bengal and Oman signals are most clearly associated with the monsoon active/break index, whereas the relationship with signals near Somali upwelling and the southern tip of India is weaker. In agreement with previous studies, we find that heat flux variations drive most of the intraseasonal SST variability in the Bay of Bengal, both in our model (regression coefficient, 0.9, against similar to 0.25 for wind stress) and in observations (0.8 regression coefficient); similar to 60% of the heat flux variation is due do shortwave radiation and similar to 40% due to latent heat flux. On the other hand, both observations and model results indicate a prominent role of dynamical oceanic processes in the Arabian Sea. Wind-stress variations force about 70-100% of SST intraseasonal variations in the Arabian Sea, through modulation of oceanic processes (entrainment, mixing, Ekman pumping, lateral advection). Our similar to 100 km resolution model suggests that internal oceanic variability (i.e. eddies) contributes substantially to intraseasonal variability at small-scale in the Somali upwelling region, but does not contribute to large-scale intraseasonal SST variability due to its small spatial scale and random phase relation to the active-break monsoon cycle. The effect of oceanic eddies; however, remains to be explored at a higher spatial resolution.