960 resultados para Non-constant coefficient diffusion equations


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper is Analyzed the local dynamical behavior of a slewing flexible structure considering nonlinear curvature. The dynamics of the original (nonlinear) governing equations of motion are reduced to the center manifold in the neighborhood of an equilibrium solution with the purpose of locally study the stability of the system. In this critical point, a Hopf bifurcation occurs. In this region, one can find values for the control parameter (structural damping coefficient) where the system is unstable and values where the system stability is assured (periodic motion). This local analysis of the system reduced to the center manifold assures the stable / unstable behavior of the original system around a known solution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Les biofilms sont des communautés de microorganismes incorporés dans une matrice exo-polymérique complexe. Ils sont reconnus pour jouer un rôle important comme barrière de diffusion dans les systèmes environnementaux et la santé humaine, donnant lieu à une résistance accrue aux antibiotiques et aux désinfectants. Comme le transfert de masse dans un biofilm est principalement dû à la diffusion moléculaire, il est primordial de comprendre les principaux paramètres influençant les flux de diffusion. Dans ce travail, nous avons étudié un biofilm de Pseudomonas fluorescens et deux hydrogels modèles (agarose et alginate) pour lesquels l’autodiffusion (mouvement Brownien) et les coefficients de diffusion mutuels ont été quantifiés. La spectroscopie par corrélation de fluorescence a été utilisée pour mesurer les coefficients d'autodiffusion dans une volume confocal de ca. 1 m3 dans les gels ou les biofilms, tandis que les mesures de diffusion mutuelle ont été faites par cellule de diffusion. En outre, la voltamétrie sur microélectrode a été utilisée pour évaluer le potentiel de Donnan des gels afin de déterminer son impact sur la diffusion. Pour l'hydrogel d'agarose, les observations combinées d'une diminution du coefficient d’autodiffusion et de l’augmentation de la diffusion mutuelle pour une force ionique décroissante ont été attribuées au potentiel de Donnan du gel. Des mesures de l'effet Donnan (différence de -30 mV entre des forces ioniques de 10-4 et 10-1 M) et l'accumulation correspondante d’ions dans l'hydrogel (augmentation d’un facteur de 13 par rapport à la solution) ont indiqué que les interactions électrostatiques peuvent fortement influencer le flux de diffusion de cations, même dans un hydrogel faiblement chargé tel que l'agarose. Curieusement, pour un gel plus chargé comme l'alginate de calcium, la variation de la force ionique et du pH n'a donné lieu qu'à de légères variations de la diffusion de sondes chargées dans l'hydrogel. Ces résultats suggèrent qu’en influençant la diffusion du soluté, l'effet direct des cations sur la structure du gel (compression et/ou gonflement induits) était beaucoup plus efficace que l'effet Donnan. De même, pour un biofilm bactérien, les coefficients d'autodiffusion étaient pratiquement constants sur toute une gamme de force ionique (10-4-10-1 M), aussi bien pour des petits solutés chargés négativement ou positivement (le rapport du coefficient d’autodiffusion dans biofilm sur celui dans la solution, Db/Dw ≈ 85 %) que pour des nanoparticules (Db/Dw≈ 50 %), suggérant que l'effet d'obstruction des biofilms l’emporte sur l'effet de charge. Les résultats de cette étude ont montré que parmi les divers facteurs majeurs qui affectent la diffusion dans un biofilm environnemental oligotrophe (exclusion stérique, interactions électrostatiques et hydrophobes), les effets d'obstruction semblent être les plus importants lorsque l'on tente de comprendre la diffusion du soluté. Alors que les effets de charge ne semblaient pas être importants pour l'autodiffusion de substrats chargés dans l'hydrogel d'alginate ou dans le biofilm bactérien, ils ont joué un rôle clé dans la compréhension de la diffusion à travers l’agarose. L’ensemble de ces résultats devraient être très utiles pour l'évaluation de la biodisponibilité des contaminants traces et des nanoparticules dans l'environnement.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The study of simple chaotic maps for non-equilibrium processes in statistical physics has been one of the central themes in the theory of chaotic dynamical systems. Recently, many works have been carried out on deterministic diffusion in spatially extended one-dimensional maps This can be related to real physical systems such as Josephson junctions in the presence of microwave radiation and parametrically driven oscillators. Transport due to chaos is an important problem in Hamiltonian dynamics also. A recent approach is to evaluate the exact diffusion coefficient in terms of the periodic orbits of the system in the form of cycle expansions. But the fact is that the chaotic motion in such spatially extended maps has two complementary aspects- - diffusion and interrnittency. These are related to the time evolution of the probability density function which is approximately Gaussian by central limit theorem. It is noticed that the characteristic function method introduced by Fujisaka and his co-workers is a very powerful tool for analysing both these aspects of chaotic motion. The theory based on characteristic function actually provides a thermodynamic formalism for chaotic systems It can be applied to other types of chaos-induced diffusion also, such as the one arising in statistics of trajectory separation. It was noted that there is a close connection between cycle expansion technique and characteristic function method. It was found that this connection can be exploited to enhance the applicability of the cycle expansion technique. In this way, we found that cycle expansion can be used to analyse the probability density function in chaotic maps. In our research studies we have successfully applied the characteristic function method and cycle expansion technique for analysing some chaotic maps. We introduced in this connection, two classes of chaotic maps with variable shape by generalizing two types of maps well known in literature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

El objetivo de este documento es recopilar algunos resultados clasicos sobre existencia y unicidad ´ de soluciones de ecuaciones diferenciales estocasticas (EDEs) con condici ´ on final (en ingl ´ es´ Backward stochastic differential equations) con particular enfasis en el caso de coeficientes mon ´ otonos, y su cone- ´ xion con soluciones de viscosidad de sistemas de ecuaciones diferenciales parciales (EDPs) parab ´ olicas ´ y el´ıpticas semilineales de segundo orden.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The migration of liquids in porous media, such as sand, has been commonly considered at high saturation levels with liquid pathways at pore dimensions. In this letter we reveal a low saturation regime observed in our experiments with droplets of extremely low volatility liquids deposited on sand. In this regime the liquid is mostly found within the grain surface roughness and in the capillary bridges formed at the contacts between the grains. The bridges act as variable-volume reservoirs and the flow is driven by the capillary pressure arising at the wetting front according to the roughness length scales. We propose that this migration (spreading) is the result of interplay between the bridge volume adjustment to this pressure distribution and viscous losses of a creeping flow within the roughness. The net macroscopic result is a special case of non-linear diffusion described by a superfast diffusion equation (SFDE) for saturation with distinctive mathematical character. We obtain solutions to a moving boundary problem defined by SFDE that robustly convey a time power law of spreading as seen in our experiments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We analyze the large time behavior of a stochastic model for the lay down of fibers on a moving conveyor belt in the production process of nonwovens. It is shown that under weak conditions this degenerate diffusion process has a unique invariant distribution and is even geometrically ergodic. This generalizes results from previous works [M. Grothaus and A. Klar, SIAM J. Math. Anal., 40 (2008), pp. 968–983; J. Dolbeault et al., arXiv:1201.2156] concerning the case of a stationary conveyor belt, in which the situation of a moving conveyor belt has been left open.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Peatland habitats are important carbon stocks that also have the potential to be significant sources of greenhouse gases, particularly when subject to changes such as artificial drainage and application of fertilizer. Models aiming to estimate greenhouse gas release from peatlands require an accurate estimate of the diffusion coefficient of gas transport through soil (Ds). The availability of specific measurements for peatland soils is currently limited. This study measured Ds for a peat soil with an overlying clay horizon and compared values with those from widely available models. The Ds value of a sandy loam reference soil was measured for comparison. Using the Currie (1960) method, Ds was measured between an air-filled porosity (ϵ) range of 0 and 0.5 cm3 cm−3. Values of Ds for the peat cores ranged between 3.2 × 10−4 and 4.4 × 10−3 m2 hour−1, for loamy clay cores between 0 and 4.7 × 10−3 m2 hour−1 and for the sandy reference soil they were between 5.4 × 10−4 and 3.4 × 10−3 m2 hour−1. The agreement of measured and modelled values of relative diffusivity (Ds/D0, with D0 the diffusion coefficient through free air) varied with soil type; however, the Campbell (1985) model provided the best replication of measured values for all soils. This research therefore suggests that the use of the Campbell model in the absence of accurately measured Ds and porosity values for a study soil would be appropriate. Future research into methods to reduce shrinkage of peat during measurement and therefore allow measurement of Ds for a greater range of ϵ would be beneficial.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The co-polar correlation coefficient (ρhv) has many applications, including hydrometeor classification, ground clutter and melting layer identification, interpretation of ice microphysics and the retrieval of rain drop size distributions (DSDs). However, we currently lack the quantitative error estimates that are necessary if these applications are to be fully exploited. Previous error estimates of ρhv rely on knowledge of the unknown "true" ρhv and implicitly assume a Gaussian probability distribution function of ρhv samples. We show that frequency distributions of ρhv estimates are in fact highly negatively skewed. A new variable: L = -log10(1 - ρhv) is defined, which does have Gaussian error statistics, and a standard deviation depending only on the number of independent radar pulses. This is verified using observations of spherical drizzle drops, allowing, for the first time, the construction of rigorous confidence intervals in estimates of ρhv. In addition, we demonstrate how the imperfect co-location of the horizontal and vertical polarisation sample volumes may be accounted for. The possibility of using L to estimate the dispersion parameter (µ) in the gamma drop size distribution is investigated. We find that including drop oscillations is essential for this application, otherwise there could be biases in retrieved µ of up to ~8. Preliminary results in rainfall are presented. In a convective rain case study, our estimates show µ to be substantially larger than 0 (an exponential DSD). In this particular rain event, rain rate would be overestimated by up to 50% if a simple exponential DSD is assumed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper is concerned with singular perturbations in parabolic problems subjected to nonlinear Neumann boundary conditions. We consider the case for which the diffusion coefficient blows up in a subregion Omega(0) which is interior to the physical domain Omega subset of R(n). We prove, under natural assumptions, that the associated attractors behave continuously as the diffusion coefficient blows up locally uniformly in Omega(0) and converges uniformly to a continuous and positive function in Omega(1) = (Omega) over bar\Omega(0). (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We show, by using a numerical analysis, that the dynamic toward equilibrium for an electrolytic cell subject to a step-like external electric field is a multirelaxation process when the diffusion coefficients of positive and negative ions are different. By assuming that the diffusion coefficient of positive ions is constant, we observe that the number of involved relaxation processes increases when the diffusion coefficient of the negative ions diminishes. Furthermore, two of the relaxation times depend nonmonotonically on the ratio of the diffusion coefficients. This result is unexpected, because the ionic drift velocity, by means of which the ions move to reach the equilibrium distribution, increases with increasing ionic mobility.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this article dedicated to Professor V. Lakshmikantham on the occasion of the celebration of his 84th birthday, we announce new results concerning the existence and various properties of an evolution system UA+B(t, s)(0 <= s <= t <= T) generated by the sum -(A(t)+B(t)) of two linear, time-dependent and generally unbounded operators defined on time-dependent domains in a complex and separable Banach space B. In particular, writing G(B) for the algebra of all linear bounded operators on B, we can express UA+B(t, s)(0 <= s <= t <= T) as the strong limit in L(B) of a product of the holomorphic contraction semigroups generated by -A(t) and -B(t), thereby getting a product formula of the Trotter-Kato type under very general conditions which allow the domain D(A(t)+B(t)) to evolve with time provided there exists a fixed set D subset of boolean AND D-t epsilon[0,D-T](A(t)+B(t)) everywhere dense in B. We then mention several possible applications of our product formula to various classes of non-autonomous parabolic initial-boundary value problems, as well as to evolution problems of Schrodinger type related to the theory of time-dependent singular perturbations of self-adjoint operators in quantum mechanics. We defer all the proofs and all the details of the applications to a separate publication. (C) 2008 Elsevier Ltd. All rights reserved.