963 resultados para Niobium phosphates
Resumo:
选择植被自然恢复不同年限的阳坡梁坡地作为研究对象,采用时空互代法研究子午岭地区植被恢复过程中土壤养分和酶活性的变化。结果表明,植被恢复140 a内,不同土层土壤有机质含量、全氮含量、蔗糖酶活性、脲酶活性、碱性磷酸酶活性和过氧化氢酶活性增加,且表土层(0~20 cm)土壤养分含量和酶活性高于下层土壤(20~40 cm)。以裸露地为对照,土壤0~20 cm土层,有机质含量、全氮含量、蔗糖酶活性、脲酶活性、碱性磷酸酶活性和过氧化氢酶活性分别增加了23.8%~534.9%、9.3%~300.0%、213.6%~521.5%、40.4%~286.5%、22.7%~232.2%和3.2%~22.4%,土壤速效磷含量呈现波动变化,过氧化氢酶活性变化幅度比其他三种酶低。土壤有机质含量与全氮、速效磷含量密切相关;土壤蔗糖酶与土壤有机质、全氮均为极显著的相关关系(0.930/0.918);土壤脲酶活性与全氮含量相关系数最高(0.804);土壤碱性磷酸酶活性与有机质、全氮含量都呈极显著相关(0.977/0.984);土壤过氧化氢酶活性与全氮含量极显著相关,相关系数达0.996。
Resumo:
有机化合物的选择氧化反应,特别是烃类的选择氧化,在石油化工中占有极其重要的地位。由于目标产物通常具有较高的活泼性,所以很难在高转化率条件下获得高选择性的氧化产物。因此对于催化研究者来说,如何控制深度氧化,提高目的产物的选择性始终是选择氧化,特别是烃类选择氧化研究中最具挑战性的技术难题。磷酸盐具有高度热稳定性,制备条件简单方便,原料价格低廉,而且其催化活性位区域易于与大分子反应等优点。其中磷酸钒、磷酸铁及其它过渡金属磷酸盐既具有氧化一还原性又有良好的表面酸性,在烃类等选择氧化反应中已表现出良好的催化性能,因而,研究磷酸钒、磷酸铁等磷酸盐催化剂在选择氧化中的催化作用具有重要的学术意义和应用前景。本论文主要在几个方面的工作研究了磷酸盐催化剂在气相选择氧化中的催化作用。探讨了过渡金属对层状磷酸钒的修饰,并以它们为催化剂前驱体,以甲苯气相选择氧化为探针反应,研究了过渡金属修饰对磷酸钒催化性能的影响。利用简单的方法直接合成了一个新的乙酞丙酮铜插层的层状磷酸钒,并用XRD、FTIR、ICP-MS、TGA和HRTEM对其进行了表征,确定合成的化合物分子式为:[Cu(acac)」0.5?VOH0.5PO4?0.5H2O。利用十二烷基胺通过简单直接的方法合成了中孔层状磷酸钒,并用XRD、FTIR?ICP一MS和TGA对其进行了表征,确定所合成的化合物主体磷酸钒为VOHPO4,十二烷基胺在VOHPo4的结构中通过与主体HPo4中的一H形成RNH3+和与VoHPO4层内的V=O形成氢键(V=O…H2NR)构成双层排列结构。利用烷基胺形成中孔层状结构的方法引入过渡金属钻和镍进入磷酸钒。以合成铜、钻和镍修饰的磷酸钒为前驱体,经焙烧后得到催化剂,甲苯气相选择氧化反应的结果表明,铜、钻和镍的修饰促进了磷酸钒的催化性能,提高了苯甲醛的选择性。发现了控制气相选择氧化产物选择性的新途径。以磷酸钒为催化剂,在环己烷、环己烯气相氧化反应中,通过在原料中加入醋酸改变了反应产物的分布,抑制了中间产物的深度氧化,可获得高选择性的目标产物。在反应温度450℃,当醋酸与环己烷、环己烯摩尔比为12.9:1和12.1:1时,分别获得了100%选择性的不稳定中间产物环己烯和1,3-环己二烯。研究了不同磷酸钒相对环己烷氧化脱氢反应的催化性能,表明在醋酸体存在条件下,催化性能顺序为:QI一OPO4>aII-VOPO4>pVOPO4>(VO)2P2O7。发现催化剂表面酸性强度不同和醋酸之间的相互作用力也不同,表面酸性越强;抗醋酸能力越强,活性中心与醋酸作用越弱,未与醋酸相互作用的活性中心数目越多,因此催化活性相对越高。同时,研究了不同载体对环己烯氧化脱氢的影响,比表面积越大,有利于提高催化剂的活性,但不利于获得高选择性的1,3-环己二烯;碱性载体有利于1,3-环己二烯的生成,但易于与醋酸反应而使催化剂失活。提出了醋酸在环己烷和环己烯氧化脱氢中作用机制:醋酸优于环己烷(烯)吸附在VPO催化剂表面活性位,这将导致在反应物吸附活性位周围几乎没有相邻的活性中心。即加入醋酸使催化剂表面形成了孤立的活性位,有利于中间物种不被继续氧化。利用上面的方法,以磷酸铁和磷酸钒为催化剂,实现了对甲酚气相选择氧化,获得100%选择性的对轻基苯甲醇、对经基苯甲醛和/或对轻基苯甲酸的混合物。与磷酸钒相比较,磷酸铁催化剂更温和,得到主要产物为对轻基苯甲醇和对经基苯甲醛;而磷酸钒催化剂更易产生深度氧化的产物对经基苯甲酸。这主要是由于他们表面酸性和氧化一还原性能的不同引起的。以磷酸铁、磷酸铜和磷酸秘为催化剂,探索了苯甲醇的气相选择氧化。研究了不同Fe(II)/Fe(III)比磷酸铁的催化活性。对于磷酸铁、磷酸铜和磷酸秘催化剂,最佳苯甲醛收率分别是在反应温度320℃、275℃和325℃,苯甲醛选择性分别为92.3%、97.1%、92.6%,相应苯甲醇的转化率为96.5%、60.9%和98.6%。
Resumo:
In order to study the extraction pattern of protactinium in different types of extracting agents and compare the similarity of patterns of extraction with dubnium and thereby unraveling its chemistry, solvent extraction of protactinium(V) with methyl-iso-butyl carbinol (MIBC) and methyl-iso-butyl ketone (MIBK) was studied using Pa-233 as a radiotracer. The extraction efficiencies of Pa were determined as a function of shaking time, concentrations of mineral acids, and extractant concentrations using the two extractants. The results show that MIBK is more suitable for the extraction of protactinium than MIBC in benzene. Furthermore, the effect of the F anion is also discussed.
Resumo:
Solvent extraction of protactinium with tri-iso-octyl-amine (TIOA) in xylene, benzene, carbon tetrachloride and chloroform from HCl, HF, HNO3, HClO4 and H2SO4 media was studied using Pa-233 as a radiotracer. The extraction efficiencies of protactinium were determined as a function of shaking time, concentrations of mineral acids in aqueous phase, extractant concentrations and diluents in organic phase. The extraction mechanism was discussed. The results show that the extracted species in the organic phase is [(R3N-H)(n)Pa(OH)(x)Cl-y(5-x-y)].
Resumo:
A series of phosphoryl (P=O) contained compounds: triethylphosphate (a), diethyl phenyl phosphate (b), ethyldiphenylphosphate (c) triarylphosphates (d and h-m), triphenylphosphine oxide (e), phenyl diphenylphosphinate (f) and diphenyl phenylphosphonate (g) have been prepared. Iron catalysts, which are generated in situ by mixing the compounds with Fe(2-EHA)(3) and (AlBu3)-Bu-i in hexane, are tested for butadiene polymerization at 50 degrees C. Phosphates donated catalysts have been, unprecedently, found to conduct extremely high syndiotactically (pentad, rrrr=46.1-94.5%) enriched 1,2-selective (1,2-structure content=56.2-94.3%) polymerization of butadiene.
Resumo:
A new application of rare earth pyrophosphates in vapor phase Beckmann rearrangement of cyclohexanone oxime was investigated. The rare earth phosphates were characterized by means of XRD, FT-IR, NH3-TPD and water contact angle measurement. It was found that the weak surface acidity and appropriate surface hydrophobicity should be two key factors in the excellent performance of these catalysts.
Resumo:
Geometries, vibrational frequencies, electron affinities, ionization potentials and dissociation energies of the title clusters in both neutral and positively and negatively charged states were studied by use of density functional theory. For both neutral and charged species, different initial isomers were studied in order to determine the structure with the lowest energy. Vibrational analysis was also performed in order to characterize these isomers. For Ta-2, Ta-Ta metallic bond is strengthened by adding or removing an electron, i.e. the charged species are much more stable than the neutral counterpart. For Ta-3, equilateral triangle with D-3h symmetry has the lowest energy for both neutral and charged species (near equilateral triangle for cation). TaO and its charged species have much larger dissociation energy compared with other tantalum oxides. For Ta2O and TaO2. structure with C-2v symmetry is much more stable than linear chains. For Ta3O, planar structure with doubly bridging oxygen atoms of C-2v, symmetry is the global minimum for both neutral and charged species. While for TaO3, three-dimensional structures are favored for both neutral (C-1 symmetry) and charged species (C-3v symmetry).
Resumo:
When alkaline earth ions in borates, phosphates or borophosphates [SrB4O7, SrB6O10, BaB8O13, MBPO5 (M=Ca,Sr)] are substituted partially and aliovalently by trivalent rare earth ions such as Sm3+, Eu3+, these rare earth ions can be reduced to divalent state by the produced negative charge vacancy V-M". The matrices must have appropriate structure containing a rigid three-dimensional network of tetragonal AO(4) groups (A=B,P). These groups can surround and isolate the produced divalent RE2+ ions from the reaction with oxygen. Therefore, this reduction reaction can be carried out even in air at high temperature. The produced divalent rare earth ions can be detected by luminescence and XANES methods and their spectroscopic properties are discussed.
Resumo:
A neutral open-frame work zincophosphate has been hydrothermally synthesized: structure refinement shows that it is composed of Zn4O12 tetramers and infinite Zn-O-Zn chains that are linked by PO4 groups forming one-dimensional 16-membered ring channels along b direction.
Resumo:
The present work revealed that the praseodymium( II ) complex of 2-carboxyethylgermanium sesquioxide (Ge-132) promotes the hydrolysis of the phosphodiester linkages of 3',5'-cyclic adenosine monophosphate (cAMP), 3' , 5'-cyclic deoxyadenosine monophosphate (dcAMP), 5'-adenosine monophosphate(5'-AMP) and 5'-deoxyadenosine monophosphate (5'-dAMP) under mild conditions. Both cAMP and dcAMP were hydrolyzed site-specifically, yielding predominantly 3'-monophosphates, the main products of the cleavage of 5'-AMP and 5'-dAMP included adenosine (Ado). deoxyadenosine (dAdo) and free phosphates respectively. A hydrolytic mechanism was proposed for cAMP, dcAMP, 5'-AMP and 5'-dAMP.
Resumo:
Cleavage of adenosine-5'-monophosphate (5'-AMP), guanosine-5'-monophosphate (5'-GMP), adenosine-3'-monophosphate (3'-AMP) and guanosine-3'-monophosphate (3'-GMP) by lanthanides was investigated by NMR and the method of measuring the liberated phosphates. Rapid cleavage of both 5'-mononucleotides and 3'-mononucleotides by Ce-III and Ce-IV under air at pH 9 and 37 degrees C was observed. Other lanthanides showed less efficiency for hydrolyzing 5'-mononucleotides but 3'-mononucleotides were catalyzed by a range of lanthanide ions. The mechanism for hydrolyzing 3'-mononucleotides by lanthanides was:investigated. The notable difference in reactivity between Ce-III and the other lanthanide ions under air was further studied showing that the cleavage is enhanced with increasing molar fraction of Ce-IV. The fast cleavage of mononucleotides by Ce-III under air at pH 9 is ascribed to the resultant Ce-IV in the reaction mixture. (C) 1997 Elsevier Science Ltd.
Resumo:
The hydrolysis of adenosine-5'-monophosphate and deoxyadenosine-5'-monophosphate has been studied with lanthanide(III) metal complexes of 2-carboxyethylgermanium sesquioxide (Ge-132) by NMR and HPLC and by measuring the liberated inorganic phosphates.
Resumo:
Analysis using historical data on the phosphate sources in Changjiang (Yangtze River) estuary show that phosphate was supplied equally from the east, south, west and north of the estuary. These sources include the Changjiang River, the Taiwan Warm Current (TWC), a cyclone-type eddy, and the 32A degrees N Upwelling, supplying different phosphates in different times, ways and intensities. The magnitude of their supplying phosphate concentration was related with the size in the order of the Changjiang River < the TWC < the 32A degrees N Upwelling < the cyclone-type eddy, and the duration of the supplying was: the Changjiang River > the TWC > the cyclone-type eddy > the 32A degrees N Upwelling. The four sources supplied a great deal of phosphate so that the phosphate concentration in the estuary was kept above 0.2 mu mol/L in previous years, satisfying the phytoplankton growth. The horizontal and vertical distribution of the phosphate concentration showed that near shallow marine areas at 122A degrees E/31A degrees N, the TWC in low nutrient concentration became an upwelling through sea bottom and brought up nutrients from sea bottom to marine surface. In addition, horizontal distribution of phosphate concentration was consistent with that of algae: Rhizosolenia robusta, Rhizosolenia calcaravis and Skeletonema, which showed that no matter during high water or low water of Changjiang River, these species brought by the TWC became predominant species. Therefore, the authors believe that the TWC flowed from south to north along the coast and played a role in deflecting the Changjiang River flow from the southern side.
Resumo:
Tazhong-Bachu region is located in the Western Tarim basin.The early Permian magmatic rocks occur in the earth surface of Tazhong-Bachu region are mainly distributed in Kepintag,Mazhartag and Wajilitag region. There are a lot of wells, in which researchers found the early Permian magmatic rocks,in desert cover area.Most magmatic rocks are basic rocks, a few of which are ultrabasic rocks and intermediate-acid magmatic rocks.The ultrabasic rocks are are mainly occur in the Cryptoexplosive Breccia Pipes ,which is located in the volcanic complex body of Wajilitag region.The basic rocks can be divided into three rock types:The first type of the magmatic rocks in Tazhong-Bachu region is volcanic rock ,which occurs in the Lower Permian Kupukuziman Formation and Kaipaizileike Formation. Most Volcanic rocks are basalts,a few of which are volcanic breccias and pyroclastic rocks.The basalts are distributed in stratiform occurrences and interbeded the clastic rocks in Kepintag region.The attitudes of the basalts are nearly horizontal.Columnar Joints, gas pore textures and amygdaloidal structure are to develop in basalts.The second type of the magmatic rocks in Tazhong-Bachu region is diabase,which occurs in Mazhartag region.Diabase dike swarms occur in the stratums of Silurian, Devonian, Carboniferous and Lower Permian.They make from NNW direction to SSE direction, the obliquity of stratum is greater than 60°, and the dike thickness is form several cm to several meters. Diabasic texture is found in the rocks .The first type of the magmatic rocks in Tazhong-Bachu region are gabbro- pyroxenite rocks ,which occur in the Wajilitag igneous complex body. The intermediate-acid magmatic rocks, which are mainly syenites, are located in Mazhartag and Wajiltag region. But they are small in the whole Tazhong-Bachu region.There are intermediate-acid magmatic rocks,which are mainly dacite,in the northeast part of the wells in Tazhong-Bachu region.But ,it is not found in earth surface.Through systematical geochemical research of early Permian magmatic rocks,which are distributed in Kepintag,Mazhartag, Wajilitag region and the wells such as F1 well、Z1 well、Z13 well、TZ18 well、H3 well、H4 well et al., the focus on the geochronologic characteristics, the main element,trace element and REE geochemistry, the mineralogic characteristics, the Sr-Nd and Pb isotopic characteristics are put forward. The main points are: 1、A combined study of CL imaging and LA-ICP-MS U-Pb dating were carried out for zircon grains of the magmatic rocks in the Tazhong-Bachu region from the Tarim basin.The results of the systematic zircon LA-ICP-MS U-Pb dating reveal 272±6Ma to 291±10Ma for the magamatic rocks. It indicated that Early Permian is an important period of magmatic acvivity in the Tazhong-Bachu region. 2、There are a big hunch in the curves of primitive mantle-normalized trace element concentrations in the early Permian magmatic rocks from Kepintag, Mazhartag, Wajilitag region and the 14 wells. Light rare earth elements are comparatively rich and heavy rare earth elements are comparatively poor. The slope rates are same between light rare erath elements and heavy rare earth elements. It is not like the curves of the basalts in the convergent margin of plate , in which the slope rates of light rare erath elements is bigger than the alope rates of heavy rare erath elements, and the curves of heavy rare earth elements are comparatively flat. The magmatic rocks of Tazhong-Bachu region rarely have the characteristics of the basalts in the convergent margin of plate, which is that Tantalum, Niobium and Titanium are much poor, and Zirconium, Hafnium and Phosphorus are moderately poor. The magamatic rocks are mostly alkaline, which is indicated by the dots of the (Na2O+K2O)-SiO2 identification diagram. All of these indicate that the early Permian magmatic rocks were formed in an extension environment of intraplate. 3、The Thorium abundance is high and Tantalum abundance is low in most magmatic rocks from Tazhong-Bachu reguion, which is formed for crustal contamination.In the Th/Yb-Ta/Yb identification diagram,most dots are in the region, which means active continental margin, but a few dots are in the region, which means mantle source. It indicated the feeding of continental crust materials. 4、The magnesium content of the olvines from Wagilitag region is richest, and the olvines from Kepintag region is poorest in the tree region. 5、Through the the Sr-Nd and Pb isotopic study of the basalts and diabases from the F1 well core, Z1 well core, Z13 well core,TZ18 well core, and the basalts,gabbros, diabases(diabase-prophyrites) and pl-peridotites from Kepintag,Mazhartag, Wajilitag region , it indicated that all isotopic data is similar and close to enriched mantle.
Resumo:
Phosphorus is an important biological and ecological element that to a certain degree constrains ecological environment and nutrient (including carbon) cycling. Marine sedimentary phosphorites are the principal phosphorus supply of the mankind. In the eastern to southern margins of the Yangtze Craton, South China, there are two phosphogenetic events at the Doushantuo stage of the Late Sinian and the Meishucun stage of the Early Cambrian respectively, corresponding two explosion events of life across the Precambrian\Cambrian boundary. Phosphorus ores from the Sinian and Cambrian phosphate in South China can be classified roughly into two categories, namely, grained and non-grained phosphorites. Grained phosphorites, hosted in dolostone type of phosphogenetic sequences and with larger industrial values, occur mainly in margins of the Upper Yangtze Platform, formed in shallow-water environments with high hydraulic energy and influenced by frequent sea-level change. Non-grained phosphorites, hosted principally in black-shale type of phosphogenetic sequences and with smaller industrial values, are distributed mainly in the Jiangnan region where deeper-water sub-basins with low hydraulic energy were prevailing at the time of phosphogenesis. Secular change ofδ~(13)C, δ~(18) O, ~(86)Sr/~(87)Sr values of carbonates from Sinian and Cambrian sequences were determined. A negative abnormal ofδ~(13)C, δ~(18)O values and positive abnormal of 86Sr/87Sr values from the fossiliferous section of the Lowest Cambrian Meishucun Formation implies life depopulation and following explosion of life across the PrecambriamCambrian boundary. Based on a lot of observations, this paper put forward a six-stage genetic model describing the whole formational process of industrial phosphorites: 1) Phosphorus was transported from continental weathering products and stored in the ocean; 2) dissolved phosphates in the seawater were enriched in specific deep seawater layer; 3) coastal upwelling currents took this phosphorus-rich seawater to a specific coastal area where phosphorus was captured by oceanic microbes; 4) clastic sediments in this upwelling area were enriched in phosphorus because of abundant phosphorus-rich organic matters and because of phosphorus absorption on grain surfaces; 5) during early diagenesis, the phosphorus enriched in the clastic sediments was released into interstitial water by decomposition and desorption, and then transported to the oxidation-reduction interface where authigenic phosphates were deposited and enriched; 6) such authigenic phosphate-rich layers were scoured, broken up, and winnowed in shallow-water environments resulting in phosphate enrichment. The Sinian-Cambrian phosphorites in South China are in many aspects comparable with coastal-upwelling phosphorites of younger geological ages, especially with phosphorites from modern coastal upwelling areas. That implies the similarities between the Sinian-Cambrian ocean and the modern ocean. Although Sinian-Cambrian oceanic life was much simpler than modern one, but similar oceanic planktons prevail, because oceanic planktons (particularly phytoplanktons) are crucial for phosphate enrichment related to coastal upwelling. It implies also a similar seawater-layering pattern between the Sinian-Cambrian ocean and the modern ocean. The two global phosphate-forming events and corresponding life-explosion events at the Sinian and Cambrian time probably resulted from dissolved-phosphate accumulation in seawater over a critical concentration during the Earth's evolution. Such an oceanic system with seawater phosphorus supersaturation is evidently unstable, and trends to return to normal state through phosphate deposition. Accordingly, this paper put forward a new conception of "normal state <=> phosphorus-supersaturation state" cycling of oceanic system. Such "normal state <=> phosphorus-supersaturation state" cycling was not only important for the three well-known global phosphate-forming events, also related to the critical moments of life evolution on the Earth. It might be of special significance. The favorable paleo-oceanic orientation in regard to coastal-upwelling phosphorite formation suggests a different orientation of the Yangtze Craton between the Sinian time and the present time (with a 135° clockwise difference), and a 25° anti-clockwise rotation of the Yangtze Craton from late Sinian to early Cambrian. During the Sinian-Cambrian time, the Yangtze Craton might be separated from the Cathaysia Block, but might be still associated with the North China Craton.