912 resultados para Newcastle disease virus (NDV) vaccines
Resumo:
Respiratory syncytial virus (RSV) is the major viral cause of severe pulmonary disease in young infants worldwide. However, the mechanisms by which RSV causes disease in humans remain poorly understood. To help bridge this gap, we developed an ex vivo/in vitro model of RSV infection based on well-differentiated primary pediatric bronchial epithelial cells (WD-PBECs), the primary targets of RSV infection in vivo. Our RSV/WD-PBEC model demonstrated remarkable similarities to hallmarks of RSV infection in infant lungs. These hallmarks included restriction of infection to noncontiguous or small clumps of apical ciliated and occasional nonciliated epithelial cells, apoptosis and sloughing of apical epithelial cells, occasional syncytium formation, goblet cell hyperplasia/metaplasia, and mucus hypersecretion. RSV was shed exclusively from the apical surface at titers consistent with those in airway aspirates from hospitalized infants. Furthermore, secretion of proinflammatory chemokines such as CXCL10, CCL5, IL-6, and CXCL8 reflected those chemokines present in airway aspirates. Interestingly, a recent RSV clinical isolate induced more cytopathogenesis than the prototypic A2 strain. Our findings indicate that this RSV/WD-PBEC model provides an authentic surrogate for RSV infection of airway epithelium in vivo. As such, this model may provide insights into RSV pathogenesis in humans that ultimately lead to successful RSV vaccines or therapeutics.
Resumo:
Bovine respiratory syncytial virus (BRSV) is the principal aetiological agent of the bovine respiratory disease complex. A BRSV subunit vaccine candidate consisting of two synthetic peptides representing putative protective epitopes on BRSV surface glycoproteins in soluble form or encapsulated in poly(lactide-co-glycolide) (PLG) microparticles were prepared. Calves (10 weeks old) with diminishing levels of BRSV-specific maternal antibody were intranasally administered a single dose of the different peptide formulations. Peptide-specific local immune responses (nasal secretion IgA), but not systemic humoral (serum IgG) or cellular responses (serum IFN-γ), were generated by all forms of peptide. There was a significant reduction in occurrence of respiratory disease in the animals inoculated with all peptide formulations compared to animals given PBS alone. Furthermore no adverse effects were observed in any of the animals post vaccination. These results suggest that intranasal immunisation with the peptide subunit vaccine does induce an as yet unidentified protective immune response.
Resumo:
As the most important viral cause of severe respiratory disease in infants and increasing recognition as important in the elderly and immunocompromised, respiratory syncytial virus (RSV) is responsible for a massive health burden worldwide. Prophylactic antibodies were successfully developed against RSV. However, their use is restricted to a small group of infants considered at high risk of severe RSV disease. There is still no specific therapeutics or vaccines to combat RSV. As such, it remains a major unmet medical need for most individuals. The World Health Organisations International Clinical Trials Registry Platform (WHO ICTRP) and PubMed were used to identify and review all RSV vaccine, prophylactic and therapeutic candidates currently in clinical trials. This review presents an expert commentary on all RSV-specific prophylactic and therapeutic candidates that have entered clinical trials since 2008.
Resumo:
Developing a vaccine against the human immunodeficiency virus (HIV) poses an exceptional challenge. There are no documented cases of immune-mediated clearance of HIV from an infected individual, and no known correlates of immune protection. Although nonhuman primate models of lentivirus infection have provided valuable data about HIV pathogenesis, such models do not predict HIV vaccine efficacy in humans. The combined lack of a predictive animal model and undefined biomarkers of immune protection against HIV necessitate that vaccines to this pathogen be tested directly in clinical trials. Adaptive clinical trial designs can accelerate vaccine development by rapidly screening out poor vaccines while extending the evaluation of efficacious ones, improving the characterization of promising vaccine candidates and the identification of correlates of immune protection.
Resumo:
Tesis (Maestría en Ciencias con Especialidad en Microbiología) UANL, 2008.
Resumo:
Tesis (Doctor en Ciencias con especialidad en Microbiología) UANL, 2014.
Resumo:
Whitespot virus could be experimentally transmitted from infected Penoeus monodon to P. in.dicus and repeatedly passed on through several batches of apparently healthy J'. in dieas. During these passages, white spots first disappeared before subsequently reappearing, Electron microscopic studies revealed the presence of oblong-shaped, fully-assembled virus towards the periphery and virus in paracrystalline arrnys towards the center of the hypertrophied nuclei. The virus isolated here is referred to as whitespot syndrome baculovirus (WSBV) until more is known of its antigenic .md genomic rclatodnc..s to isolates from other countries
Resumo:
Fenneropenaeus indicus could be protected from white spot disease (WSD) caused by white spot syndrome virus (WSSV) using a formalin-inactivated viral preparation (IVP) derived from WSSV-infected shrimp tissue. The lowest test quantity of lyophilized IVP coated onto feed at 0.025 g–1 (dry weight) and administered at a rate of 0.035 g feed g–1 body weight d–1 for 7 consecutive days was sufficient to provide protection from WSD for a short period (10 d after cessation of IVP administration). Shrimp that survived challenges on the 5th and 10th days after cessation of IVP administration survived repeated challenges although they were sometimes positive for the presence of WSSV by a polymerase chain reaction (PCR) assay specific for WSSV. These results suggest that F. indicus can be protected from WSD by simple oral administration of IVP
Resumo:
Introducción. Con la creación de la vacuna contra el virus de papiloma humano en los años ochentas, se ha promovido su aplicación de manera sistemática para evitar el cáncer cervical, que es la segunda causa de mortalidad por cáncer en mujeres en edad fértil. Actualmente se desconoce el impacto de los resultados de su aplicación. Se pretendió evaluar la mejor evidencia relacionada con los resultados de la vacuna contra VPH en mujeres en edad fértil. Metodología Se realizó una revisión sistemática de literatura incluyendo los artículos con mejor evidencia en los últimos cinco años. Los términos mesH incluyeron HPV vaccine, women, efficacy entre otros. Todos los artículos fueron clasificados por evidencia antes de ser analizados. Resultados Se encontraron un total de 557 artículos relacionados con el tema de los cuales 21 cumplieron criterios para su selección. La mayoría de artículos fueron clasificados como evidencia II. Las causas más frecuentes de exclusión fueron por tema no acorde y título. Discusión Los resultados de la revisión sistemática permiten definir que la eficacia de la vacuna contra VPH, tanto y la vacuna bivalente como y la cuadrivalente supera el 97% cuando se completan tres dosis. No hay reportes de eventos adversos graves, la edad de aplicación ideal es entre 9-14 años de edad.
Resumo:
Introducción: La infección por un tipo de Virus del Papiloma Humano de alto riesgo (VPH-AR), es el factor principal en el desarrollo de Cáncer de Cérvix (CC). La carga viral puede modular esta asociación, por lo que resulta importante su cuantificación y el establecimiento de su relación con lesiones precursoras de CC. Metodología: 60 mujeres con lesiones escamosas intraepiteliales (LEI) y 120 mujeres sin LEI, confirmadas por colposcopia, fueron incluidas en el estudio. Se determinó la carga viral de 6 tipos de VPH-AR, mediante PCR en tiempo real. Se estimaron OR crudos y ajustados para evaluar la asociación entre la carga viral de cada tipo y las lesiones cervicales. Resultados: 93.22% de mujeres con LEI y 91.23% de mujeres negativas, fueron positivas para al menos un tipo de VPH. VPH-18 y VPH-16 fueron los tipos más prevalentes, junto con VPH-31 en mujeres sin LEI. No se encontraron diferencias estadísticamente significativas de las cargas virales entre éstos dos grupos, aunque se observó un mayor carga viral en lesiones para algunos tipos virales. Una mayor frecuencia de lesiones se asoció a infecciones con carga baja de VPH-16 (ORa: 3.53; IC95%: 1.16 – 10.74), en comparación a mujeres con carga alta de VPH-16, (ORa: 2.63; IC95%: 1.09 – 6.36). En infecciones por VPH-31, la presencia de carga viral alta, se asoció con una menor frecuencia de lesiones (ORa: 0.34; IC95%: 0.15 – 0.78). Conclusiones: La prevalencia tipo-específica de VPH se corresponde con las reportadas a nivel mundial. La asociación entre la carga viral del VPH y la frecuencia de LEI es tipo específica y podría depender de la duración de la infección, altas cargas relacionadas con infecciones transitorias, y bajas cargas con persistentes. Este trabajo contribuye al entendimiento del efecto de la carga viral en la historia natural del CC; sin embargo, estudios prospectivos son necesarios para confirmar estos resultados.
Resumo:
Bovine Viral Diarrhea Virus (BVDV) is widespread in cattle in Brazil and research shows its large antigenic variability. Available vaccines are produced with virus strains isolated in other countries and may not be effective. In this study, inactivated vaccines containing the Brazilian BVDV-Ib IBSP11 isolate were developed and tested on 6 groups of 10 guinea pigs (Cavia porcellus). Animals in groups A and C received an aqueous vaccine (aluminum hydroxide); B and D groups received an oily vaccine (Montanide ISA50); Group E positive-control animals were given an imported commercial vaccine with BVDV-la Singer; Group F animals were sham vaccinated (negative control). Groups A, B and E received two doses, and Groups C and D, three, every 21 days. Twelve blood samples were taken, at 21-day intervals over 231 days, and evaluated for antibody titer through virus-neutralization (VN), using a homologous strain (IBSP11), and a heterologous strain (BVDV-la NADL). Most animals, 42 days following the first dose, seroconverted to both strains and, after the second dose, there was a significant increase of titers in all groups. The oily formulation induced greater response after the third administration. This increase was not observed with the aqueous vaccines, regardless of the virus used in the VN. Antibody decline was more rapid in animals that received aqueous vaccines. The results showed the importance of studying the influence of endemic strains of commercial vaccines, to improve the efficacy of BVD vaccination. Use of the endemic strain in vaccine formulation presented promising results, as well as the use of guinea pigs as a laboratory model. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Human respiratory syncytial virus (HRSV) is the major pathogen leading to respiratory disease in infants and neonates worldwide. An effective vaccine has not yet been developed against this virus, despite considerable efforts in basic and clinical research. HRSV replication is independent of the nuclear RNA processing constraints, since the virus genes are adapted to the cytoplasmic transcription, a process performed by the viral RNA-dependent RNA polymerase. This study shows that meaningful nuclear RNA polymerase II dependent expression of the HRSV nucleoprotein (N) and phosphoprotein (F) proteins can only be achieved with the optimization of their genes, and that the intracellular localization of N and P proteins changes when they are expressed out of the virus replication context. Immunization tests performed in mice resulted in the induction of humoral immunity using the optimized genes. This result was not observed for the non-optimized genes. In conclusion, optimization is a valuable tool for improving expression of HRSV genes in DNA vaccines. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Background: Hepatitis C virus (HCV) currently infects approximately three percent of the world population. In view of the lack of vaccines against HCV, there is an urgent need for an efficient treatment of the disease by an effective antiviral drug. Rational drug design has not been the primary way for discovering major therapeutics. Nevertheless, there are reports of success in the development of inhibitor using a structure-based approach. One of the possible targets for drug development against HCV is the NS3 protease variants. Based on the three-dimensional structure of these variants we expect to identify new NS3 protease inhibitors. In order to speed up the modeling process all NS3 protease variant models were generated in a Beowulf cluster. The potential of the structural bioinformatics for development of new antiviral drugs is discussed.Results: the atomic coordinates of crystallographic structure 1CU1 and 1DY9 were used as starting model for modeling of the NS3 protease variant structures. The NS3 protease variant structures are composed of six subdomains, which occur in sequence along the polypeptide chain. The protease domain exhibits the dual beta-barrel fold that is common among members of the chymotrypsin serine protease family. The helicase domain contains two structurally related beta-alpha-beta subdomains and a third subdomain of seven helices and three short beta strands. The latter domain is usually referred to as the helicase alpha-helical subdomain. The rmsd value of bond lengths and bond angles, the average G-factor and Verify 3D values are presented for NS3 protease variant structures.Conclusions: This project increases the certainty that homology modeling is an useful tool in structural biology and that it can be very valuable in annotating genome sequence information and contributing to structural and functional genomics from virus. The structural models will be used to guide future efforts in the structure-based drug design of a new generation of NS3 protease variants inhibitors. All models in the database are publicly accessible via our interactive website, providing us with large amount of structural models for use in protein-ligand docking analysis.
Resumo:
A 30-basepair (bp) deletion in the Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) gene has been reported in nasopharyngeal carcinoma and EBV-associated malignant lymphomas. Prior studies have found the deletion in about 10% to 28% of cases of Hodgkin's disease (HD), particularly in cases with aggressive histology. We studied the prevalence of 30-bp LMP1 gene deletion in EBV-positive HD in the United States (US) (12 cases) and Brazil (26 cases) with comparison to reactive lymphoid tissues (21 cases) and HD without EBV-positive Reed-Sternberg cells (15 cases). We studied the status of the LMP1 gene by Southern blot hybridization of polymerase chain reaction (PCR) products obtained after amplification with primers spanning the site of the deletion. We also performed EBV typing, EBER1 in situ hybridization, and LMP1 protein immunohistochemistry. EBV was detected in 12/26 (46%) cases of HD from the US and 26/27 (96%) cases of Brazilian HD. The 30-bp LMP1 gene deletion was observed in 4/12 (33%) cases of EBV-positive HD from US, and 12/26 (46%) cases of Brazilian EBV-positive HD, including 3 cases of type B EBV, as compared with 12/21 (57%) reactive lymphoid tissues and 9/15 (60%) cases of EBV-negative HD. US and Brazilian HD showed a higher prevalence of the 30-bp LMP1 gene deletion, compared with studies of others. The unexpected finding of high incidence of 30-bp deletion in LMP1 gene in reactive lymphoid tissue and HD without EBV-positive Reed-Sternberg cells suggests that this deletion may not be relevant to HD pathogenesis in most cases. Copyright (C) 1997 by W.B. Saunders Company.