Carga viral de seis tipos de Virus del Papiloma Humano de alto riesgo y su asociacion con lesiones cervicales


Autoria(s): Del Río Ospina, Luisa Fernanda
Contribuinte(s)

Soto De León, Sara Cecilia

Data(s)

26/05/2015

Resumo

Introducción: La infección por un tipo de Virus del Papiloma Humano de alto riesgo (VPH-AR), es el factor principal en el desarrollo de Cáncer de Cérvix (CC). La carga viral puede modular esta asociación, por lo que resulta importante su cuantificación y el establecimiento de su relación con lesiones precursoras de CC. Metodología: 60 mujeres con lesiones escamosas intraepiteliales (LEI) y 120 mujeres sin LEI, confirmadas por colposcopia, fueron incluidas en el estudio. Se determinó la carga viral de 6 tipos de VPH-AR, mediante PCR en tiempo real. Se estimaron OR crudos y ajustados para evaluar la asociación entre la carga viral de cada tipo y las lesiones cervicales. Resultados: 93.22% de mujeres con LEI y 91.23% de mujeres negativas, fueron positivas para al menos un tipo de VPH. VPH-18 y VPH-16 fueron los tipos más prevalentes, junto con VPH-31 en mujeres sin LEI. No se encontraron diferencias estadísticamente significativas de las cargas virales entre éstos dos grupos, aunque se observó un mayor carga viral en lesiones para algunos tipos virales. Una mayor frecuencia de lesiones se asoció a infecciones con carga baja de VPH-16 (ORa: 3.53; IC95%: 1.16 – 10.74), en comparación a mujeres con carga alta de VPH-16, (ORa: 2.63; IC95%: 1.09 – 6.36). En infecciones por VPH-31, la presencia de carga viral alta, se asoció con una menor frecuencia de lesiones (ORa: 0.34; IC95%: 0.15 – 0.78). Conclusiones: La prevalencia tipo-específica de VPH se corresponde con las reportadas a nivel mundial. La asociación entre la carga viral del VPH y la frecuencia de LEI es tipo específica y podría depender de la duración de la infección, altas cargas relacionadas con infecciones transitorias, y bajas cargas con persistentes. Este trabajo contribuye al entendimiento del efecto de la carga viral en la historia natural del CC; sin embargo, estudios prospectivos son necesarios para confirmar estos resultados.

Background: Infection with high risk of human papillomavirus (HR-HPV) is the main factor in the development of Cervical Cancer (CC). Viral load can modulate this relationship, so it is important to quantify and establish its association with CC precursor lesions. Methods: 60 women having cervical intraepithelial neoplasia (CIN) and 120 women without CIN and confirmed by colposcopy, were included in the study. Samples were tested for six high-risk HPV types to determine viral copy number by real-time PCR. Crude and adjusted odds ratios (ORa) were estimated for evaluating the association between each viral type’s DNA load and the risk of cervical lesions occurring. Results: 93.22% of women with CIN and 91.23% negative women were positive for at least one type of HPV. HPV-18 and HPV-16 were the most prevalent types, with HPV-31 in women without CIN. No statistically significant differences in viral load between these two groups were identified, although a higher viral load was observed in CIN regarding some viral types. Lesions were more frequent in HPV-16 patients having a low viral load (3.53 ORa, 1.16-10.74 95%CI) compared to those having high HPV-16 load (2.62 ORa, 1.08-6.35 95%CI). High viral load in HPV-31 patients was associated with lower CIN frequency (0.34 ORa, 0.15-0.78 95%CI). Conclusions: The type-specific prevalence of HPV is consistent with the reported worldwide. An association between HPV DNA load and CIN frequency was seen to be type-specific and may have depended on the duration of infection, high viral loads related to transient infections and low viral loads with persistent infections. This analysis has provided information for understanding the effect of HPV DNA load on cervical lesion development. However prospective studies are needed.

Formato

application/pdf

Identificador

http://repository.urosario.edu.co/handle/10336/10521

Idioma(s)

spa

Publicador

Facultad de medicina

Direitos

info:eu-repo/semantics/openAccess

Fonte

instname:Universidad del Rosario

reponame:Repositorio Institucional EdocUR

1. Munoz N, Bosch FX, de Sanjose S, Herrero R, Castellsague X, Shah KV, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. The New England journal of medicine. 2003;348(6):518-27.

2. de Freitas AC, Gurgel AP, Chagas BS, Coimbra EC, do Amaral CM. Susceptibility to cervical cancer: an overview. Gynecologic oncology. 2012;126(2):304-11.

3. Bosch FX, Munoz N. The viral etiology of cervical cancer. Virus research. 2002;89(2):183-90.

4. Forman D, de Martel C, Lacey CJ, Soerjomataram I, Lortet-Tieulent J, Bruni L, et al. Global burden of human papillomavirus and related diseases. Vaccine. 2012;30 Suppl 5:F12-23.

5. Marks M, Gravitt PE, Utaipat U, Gupta SB, Liaw K, Kim E, et al. Kinetics of DNA load predict HPV 16 viral clearance. Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology. 2011;51(1):44-9.

6. Munoz N, Hernandez-Suarez G, Mendez F, Molano M, Posso H, Moreno V, et al. Persistence of HPV infection and risk of high-grade cervical intraepithelial neoplasia in a cohort of Colombian women. British journal of cancer. 2009;100(7):1184-90.

7. Ramanakumar AV, Goncalves O, Richardson H, Tellier P, Ferenczy A, Coutlee F, et al. Human papillomavirus (HPV) types 16, 18, 31, 45 DNA loads and HPV-16 integration in persistent and transient infections in young women. BMC infectious diseases. 2010;10:326.

8. Hernández-Hernández DM, Ornelas-Bernal L, Guido-Jiménez M, Apresa-Garcia T, Alvarado-Cabrero I, Salcedo-Vargas M, et al. Association between high-risk human papillomavirus DNA load and precursor lesions of cervical cancer in Mexican women. Gynecologic oncology. 2003;90(2):310-7.

9. Ylitalo N, Sorensen P, Josefsson AM, Magnusson PK, Andersen PK, Ponten J, et al. Consistent high viral load of human papillomavirus 16 and risk of cervical carcinoma in situ: a nested case-control study. Lancet. 2000;355(9222):2194-8.

10. Josefsson AM, Magnusson PK, Ylitalo N, Sorensen P, Qwarforth-Tubbin P, Andersen PK, et al. Viral load of human papilloma virus 16 as a determinant for development of cervical carcinoma in situ: a nested case-control study. Lancet. 2000;355(9222):2189-93.

11. Moberg M, Gustavsson I, Wilander E, Gyllensten U. High viral loads of human papillomavirus predict risk of invasive cervical carcinoma. British journal of cancer. 2005;92(5):891-4.

12. Andersson S, Safari H, Mints M, Lewensohn-Fuchs I, Gyllensten U, Johansson B. Type distribution, viral load and integration status of high-risk human papillomaviruses in pre-stages of cervical cancer (CIN). British journal of cancer. 2005;92(12):2195-200.

13. Moberg M, Gustavsson I, Gyllensten U. Real-time PCR-based system for simultaneous quantification of human papillomavirus types associated with high risk of cervical cancer. J Clin Microbiol. 2003;41(7):3221-8.

14. Onan MA, Taskiran C, Bozdayi G, Biri A, Erdem O, Acar A, et al. Assessment of human papilloma viral load of archival cervical intraepithelial neoplasia by real-time polymerase chain reaction in a Turkish population. European journal of gynaecological oncology. 2005;26(6):632-5.

15. Sherman ME, Schiffman M, Cox JT, Atypical Squamous Cells of Undetermined Significance/Low-Grade Squamous Intraepithelial Lesion Triage Study G. Effects of age and human papilloma viral load on colposcopy triage: data from the randomized Atypical Squamous Cells of Undetermined Significance/Low-Grade Squamous Intraepithelial Lesion Triage Study (ALTS). Journal of the National Cancer Institute. 2002;94(2):102-7.

16. Ibeanu OA. Molecular pathogenesis of cervical cancer. Cancer biology & therapy. 2011;11(3):295-306.

17. Abba MC, Mouron SA, Gomez MA, Dulout FN, Golijow CD. Association of human papillomavirus viral load with HPV16 and high-grade intraepithelial lesion. International journal of gynecological cancer : official journal of the International Gynecological Cancer Society. 2003;13(2):154-8.

18. Carcopino X, Henry M, Mancini J, Giusiano S, Boubli L, Olive D, et al. Significance of HPV 16 and 18 viral load quantitation in women referred for colposcopy. J Med Virol. 2012;84(2):306-13.

19. Swan DC, Tucker RA, Tortolero-Luna G, Mitchell MF, Wideroff L, Unger ER, et al. Human papillomavirus (HPV) DNA copy number is dependent on grade of cervical disease and HPV type. J Clin Microbiol. 1999;37(4):1030-4.

20. Xi LF, Koutsky LA, Castle PE, Wheeler CM, Galloway DA, Mao C, et al. Human papillomavirus type 18 DNA load and 2-year cumulative diagnoses of cervical intraepithelial neoplasia grades 2-3. Journal of the National Cancer Institute. 2009;101(3):153-61.

21. Moberg M, Gustavsson I, Gyllensten U. Type-specific associations of human papillomavirus load with risk of developing cervical carcinoma in situ. International journal of cancer Journal international du cancer. 2004;112(5):854-9.

22. Boulet GA, Horvath CA, Berghmans S, Bogers J. Human papillomavirus in cervical cancer screening: important role as biomarker. Cancer Epidemiol Biomarkers Prev. 2008;17(4):810-7.

23. Chaiwongkot A, Pientong C, Ekalaksananan T, Kongyingyoes B, Thinkhamrop J, Yuenyao P, et al. Evaluation of primers and PCR performance on HPV DNA screening in n

24. Koliopoulos G, Arbyn M, Martin-Hirsch P, Kyrgiou M, Prendiville W, Paraskevaidis E. Diagnostic accuracy of human papillomavirus testing in primary cervical screening: a systematic review and meta-analysis of non-randomized studies. Gynecologic oncology. 2007;104(1):232-46.

25. Jenkins A, Allum AG, Strand L, Aakre RK. Simultaneous detection, typing and quantitation of oncogenic human papillomavirus by multiplex consensus real-time PCR. Journal of virological methods. 2013;187(2):345-51.

26. Jentschke M, Soergel P, Lange V, Kocjan B, Doerk T, Luyten A, et al. Evaluation of a new multiplex real-time polymerase chain reaction assay for the detection of human papillomavirus infections in a referral population. International journal of gynecological cancer : official journal of the International Gynecological Cancer Society. 2012;22(6):1050-6.

27. Schmitt M, Depuydt C, Benoy I, Bogers J, Antoine J, Pawlita M, et al. Viral load of high-risk human papillomaviruses as reliable clinical predictor for the presence of cervical lesions. Cancer Epidemiol Biomarkers Prev. 2013;22(3):406-14.

28. Munoz N, Hernandez-Suarez G, Mendez F, Molano M, Posso H, Moreno V, et al. Persistence of HPV infection and risk of high-grade cervical intraepithelial neoplasia in a cohort of Colombian women. British journal of cancer. 2009;100(7):1184-90.

29. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al. Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 Lyon, France: International Agency for Research on Cancer; 2013.

30. de Villiers EM, Fauquet C, Broker TR, Bernard HU, zur Hausen H. Classification of papillomaviruses. Virology. 2004;324(1):17-27.

31. Soto-De Leon S, Camargo M, Sanchez R, Munoz M, Perez-Prados A, Purroy A, et al. Distribution patterns of infection with multiple types of human papillomaviruses and their association with risk factors. PLoS One. 2011;6(2):e14705.

32. Schiffman M, Castle PE, Jeronimo J, Rodriguez AC, Wacholder S. Human papillomavirus and cervical cancer. Lancet. 2007;370(9590):890-907.

33. Salud OMdl. Control integral del cáncer cervicouterino. Guía de prácticas esenciales Colombia 2007. p. 292.

34. Salud OPdl. Estrategia y plan de acción regional para la prevención y el control del cáncer cervicouterino en América Látina y el Caribe. Washington, D.C. : OPS; 2008. p. 1-24.

35. Ministerio de Salud y Protección Social- Instituto Nacional de Cáncerología E. Plan Decenal para el Control del Cáncer en Colombia 2012-2021. In: Colombia, editor. Bogotá, D.C2012-2021. p. 1-124.

36. Murillo R. [Cervical cancer control in Colombia: achievements and challenges of cytology based programs]. Biomedica. 2008;28(4):467-70.

37. Cuzick J, Arbyn M, Sankaranarayanan R, Tsu V, Ronco G, Mayrand MH, et al. Overview of human papillomavirus-based and other novel options for cervical cancer screening in developed and developing countries. Vaccine. 2008;26 Suppl 10:K29-41.

38. Boyle P, Levin B. World cancer report 2008. Research Against Cancer: World cancer report In: Lyon, editor. 2008. p. 1-260.

39. Piñeros M, Cendales R, Murillo R, C W, S T. Cobertura de la Citología de Cuello Uterino y Factores Relacionados en Colombia, 2005. Revista de Salud Pública. 2007;9(3):327-41.

40. Coutlee F, Rouleau D, Ferenczy A, Franco E. The laboratory diagnosis of genital human papillomavirus infections. Can J Infect Dis Med Microbiol. 2005;16(2):83-91.

41. Molijn A, Kleter B, Quint W, van Doorn LJ. Molecular diagnosis of human papillomavirus (HPV) infections. Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology. 2005;32 Suppl 1:S43-51.

42. Wang SS, Hildesheim A. Chapter 5: Viral and host factors in human papillomavirus persistence and progression. J Natl Cancer Inst Monogr. 2003(31):35-40.

43. Gravitt PE, Kovacic MB, Herrero R, Schiffman M, Bratti C, Hildesheim A, et al. High load for most high risk human papillomavirus genotypes is associated with prevalent cervical cancer precursors but only HPV16 load predicts the development of incident disease. International journal of cancer Journal international du cancer. 2007;121(12):2787-93.

44. Guo M, Sneige N, Silva EG, Jan YJ, Cogdell DE, Lin E, et al. Distribution and viral load of eight oncogenic types of human papillomavirus (HPV) and HPV 16 integration status in cervical intraepithelial neoplasia and carcinoma. Mod Pathol. 2007;20(2):256-66.

45. Coutlee F, Mayrand MH, Roger M, Franco EL. Detection and typing of human papillomavirus nucleic acids in biological fluids. Public Health Genomics. 2009;12(5-6):308-18.

46. Santos AL, Derchain SF, Martins MR, Sarian LO, Martinez EZ, Syrjanen KJ. Human papillomavirus viral load in predicting high-grade CIN in women with cervical smears showing only atypical squamous cells or low-grade squamous intraepithelial lesion. Sao Paulo Med J. 2003;121(6):238-43.

47. Wu Y, Chen Y, Li L, Yu G, Zhang Y, He Y. Associations of high-risk HPV types and viral load with cervical cancer in China. Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology. 2006;35(3):264-9.

48. Tabora N, Ferrera A, Bakkers JM, Massuger LF, Melchers WJ. High HPV 16 viral load is associated with increased cervical dysplasia in Honduran women. Am J Trop Med Hyg. 2008;78(5):843-6.

49. Cricca M, Morselli-Labate AM, Venturoli S, Ambretti S, Gentilomi GA, Gallinella G, et al. Viral DNA load, physical status and E2/E6 ratio as markers to grade HPV16 positive women for high-grade cervical lesions. Gynecologic oncology. 2007;106(3):549-57.

50. Ault KA. Epidemiology and natural history of human papillomavirus infections in the female genital tract. Infectious diseases in obstetrics and gynecology. 2006;2006 Suppl:40470.

51. Li N, Franceschi S, Howell-Jones R, Snijders PJ, Clifford GM. Human papillomavirus type distribution in 30,848 invasive cervical cancers worldwide: Variation by geographical region, histological type and year of publication. International journal of cancer Journal international du cancer. 2011;128(4):927-35.

52. Guan P, Howell-Jones R, Li N, Bruni L, de Sanjose S, Franceschi S, et al. Human papillomavirus types in 115,789 HPV-positive women: a meta-analysis from cervical infection to cancer. International journal of cancer Journal international du cancer. 2012;131(10):2349-59.

53. Murillo R, Molano M, Martinez G, Mejia JC, Gamboa O. HPV prevalence in Colombian women with cervical cancer: implications for vaccination in a developing country. Infectious diseases in obstetrics and gynecology. 2009;2009:653598.

54. Garcia DA, Cid-Arregui A, Schmitt M, Castillo M, Briceno I, Aristizabal FA. Highly Sensitive Detection and Genotyping of HPV by PCR Multiplex and Luminex Technology in a Cohort of Colombian Women with Abnormal Cytology. Open Virol J. 2011;5:70-9.

55. Camargo M, Soto-De Leon SC, Sanchez R, Perez-Prados A, Patarroyo ME, Patarroyo MA. Frequency of human papillomavirus infection, coinfection, and association with different risk factors in Colombia. Ann Epidemiol. 2011;21(3):204-13.

56. Lewis M. Situational Analysis of cervical cancer in Latin America & Caribbean. 2004:1-40.

57. Organization PAH. Abordaje integral para la prevención y el control del cáncer cervicouterino. 2011.

58. Bosch X, Harper D. Prevention strategies of cervical cancer in the HPV vaccine era. Gynecologic oncology. 2006;103(1):21-4.

59. Lopez A, Lizano M. Cáncer cérvicouterino y virus del papiloma humano: La historia que no termina. 2006:31-57.

60. Payan C, Ducancelle A, Aboubaker MH, Caer J, Tapia M, Chauvin A, et al. Human papillomavirus quantification in urine and cervical samples by using the Mx4000 and LightCycler general real-time PCR systems. Journal of clinical microbiology. 2007;45(3):897-901.

61. Ortiz R, Uribe C, Díaz L, Dangond Y. Factores de riesgo para cáncer de cuello uterino Revista Colombiana de Obstetricia y Ginecología 2004;55(2):146-60.

62. Waggoner SE. Cervical cancer. Lancet. 2003;361(9376):2217-25.

63. Safaeian M, Solomon D. Cervical Cancer Prevention- Cervical Screening: Science in Evolution. Obstetrics and gynecology clinics of North America. 2009;34(4):1-20.

64. Solomon D, Davey D, Kurman R, Moriarty A, O'Connor D, Prey M, et al. The 2001 Bethesda System: terminology for reporting results of cervical cytology. Jama. 2002;287(16):2114-9.

65. Galvis V, Bustamante M, Sarmiento C. Norma técnica para la detección temprana del cáncer de cuello uterino y guía de atención de lesiones preneoplásicas de cuello uterino 2001:1-15.

66. Stanley M, Gissmann L, Nardelli-Haefliger D. Immunobiology of human papillomavirus infection and vaccination - implications for second generation vaccines. Vaccine. 2008;26 Suppl 10:K62-7.

67. Scarinci IC, Garcia FA, Kobetz E, Partridge EE, Brandt HM, Bell MC, et al. Cervical cancer prevention: new tools and old barriers. Cancer. 2010;116(11):2531-42.

68. Zheng ZM, Baker CC. Papillomavirus genome structure, expression, and post-transcriptional regulation. Front Biosci. 2006;11:2286-302.

69. Munger K, Baldwin A, Edwards KM, Hayakawa H, Nguyen CL, Owens M, et al. Mechanisms of human papillomavirus-induced oncogenesis. J Virol. 2004;78(21):11451-60.

70. Remmerbach TW, Brinckmann UG, Hemprich A, Chekol M, Kuhndel K, Liebert UG. PCR detection of human papillomavirus of the mucosa: comparison between MY09/11 and GP5+/6+ primer sets. Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology. 2004;30(4):302-8.

71. Soto-De Leon SC, Camargo M, Sanchez R, Leon S, Urquiza M, Acosta J, et al. Prevalence of infection with high-risk human papillomavirus in women in Colombia. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases. 2009;15(1):100-2.

72. Liu J, Rose B, Huang X, Liao G, Carter J, Wu X, et al. Comparative analysis of characteristics of women with cervical cancer in high- versus low-incidence regions. Gynecologic oncology. 2004;94(3):803-10.

73. Kitchener HC, Castle PE, Cox JT. Chapter 7: Achievements and limitations of cervical cytology screening. Vaccine. 2006;24 Suppl 3:S3/63-70.

74. Qu W, Jiang G, Cruz Y, Chang CJ, Ho GY, Klein RS, et al. PCR detection of human papillomavirus: comparison between MY09/MY11 and GP5+/GP6+ primer systems. J Clin Microbiol. 1997;35(6):1304-10.

75. Iftner T, Villa LL. Chapter 12: Human papillomavirus technologies. J Natl Cancer Inst Monogr. 2003(31):80-8.

76. Hudelist G, Manavi M, Pischinger KI, Watkins-Riedel T, Singer CF, Kubista E, et al. Physical state and expression of HPV DNA in benign and dysplastic cervical tissue: different levels of viral integration are correlated with lesion grade. Gynecologic oncology. 2004;92(3):873-80.

77. Munoz M, Camargo M, Soto-De Leon SC, Rojas-Villarraga A, Sanchez R, Jaimes C, et al. The diagnostic performance of classical molecular tests used for detecting human papillomavirus. Journal of virological methods. 2012;185(1):32-8.

78. Ramírez VG, Bustamante MA, Sarmiento CA. Norma Técnica para la Detección Temprana del Cáncer de Cuello Uterino y Guía de Atención de Lesiones Preneoplásicas de Cuello Uterino. Colombia2000. p. 1-26.

79. Boicea A, Patrascu A, Surlin V, Iliescu D, Schenker M, Chiutu L. Correlations between colposcopy and histologic results from colposcopically directed biopsy in cervical precancerous lesions. Rom J Morphol Embryol. 2012;53(3 Suppl):735-41.

80. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22(22):4673-80.

81. . Available from: http://web.uri.edu/gsc/real-time-pcr/.

82. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55(4):611-22.

83. Yuan JS, Reed A, Chen F, Stewart CN, Jr. Statistical analysis of real-time PCR data. BMC Bioinformatics. 2006;7:85.

84. Resolución N008430 de 1993. 8430. Colombia1993.

85. Trabajo Md. Decreto 3068 del 2013. In: Colombia, editor. 2013.

86. Al-Awadhi R, Chehadeh W, Al-Jassar W, Al-Harmi J, Al-Saleh E, Kapila K. Viral load of human papillomavirus in women with normal and abnormal cervical cytology in Kuwait. Journal of infection in developing countries. 2013;7(2):130-6.

87. Gravitt PE, Peyton C, Wheeler C, Apple R, Higuchi R, Shah KV. Reproducibility of HPV 16 and HPV 18 viral load quantitation using TaqMan real-time PCR assays. Journal of virological methods. 2003;112(1-2):23-33.

88. Tábota N, Annabelle F, Bakkers JMJE, Massuger LFAG, Melchers WJG. High HPV 16 Viral Load is Associated with Increased Cervical Dysplasia in Honduran Women. Am JTrop Med Hyg . 2008;78(5):843-6.

89. Soto-De Leon SC, Del Rio-Ospina L, Camargo M, Sanchez R, Moreno-Perez DA, Perez-Prados A, et al. Persistence, clearance and reinfection regarding six high risk human papillomavirus types in Colombian women: a follow-up study. BMC infectious diseases. 2014;14:395.

90. Poljak M, Seme K, Maver PJ, Kocjan BJ, Cuschieri KS, Rogovskaya SI, et al. Human papillomavirus prevalence and type-distribution, cervical cancer screening practices and current status of vaccination implementation in Central and Eastern Europe. Vaccine. 2013;31 Suppl 7:H59-70.

91. de Sanjose S, Diaz M, Castellsague X, Clifford G, Bruni L, Munoz N, et al. Worldwide prevalence and genotype distribution of cervical human papillomavirus DNA in women with normal cytology: a meta-analysis. The Lancet infectious diseases. 2007;7(7):453-9.

92. Moore RA, Ogilvie G, Fornika D, Moravan V, Brisson M, Amirabbasi-Beik M, et al. Prevalence and type distribution of human papillomavirus in 5,000 British Columbia women--implications for vaccination. Cancer causes & control : CCC. 2009;20(8):1387-96.

93. Selva L, Gonzalez-Bosquet E, Rodriguez-Plata MT, Esteva C, Sunol M, Munoz-Almagro C. Detection of human papillomavirus infection in women attending a colposcopy clinic. Diagnostic microbiology and infectious disease. 2009;64(4):416-21.

94. Zhang R, Velicer C, Chen W, Liaw KL, Wu EQ, Liu B, et al. Human papillomavirus genotype distribution in cervical intraepithelial neoplasia grades 1 or worse among 4215 Chinese women in a population-based study. Cancer epidemiology. 2013;37(6):939-45.

95. Cuschieri KS, Cubie HA, Whitley MW, Seagar AL, Arends MJ, Moore C, et al. Multiple high risk HPV infections are common in cervical neoplasia and young women in a cervical screening population. Journal of clinical pathology. 2004;57(1):68-72.

96. Xi LF, Hughes JP, Edelstein ZR, Kiviat NB, Koutsky LA, Mao C, et al. Human Papillomavirus (HPV) type 16 and type 18 DNA Loads at Baseline and Persistence of Type-Specific Infection during a 2-year follow-up. The Journal of infectious diseases. 2009;200(11):1789-97.

97. Schmitt M, Depuydt C, Benoy I, Bogers J, Antoine J, Arbyn M, et al. Multiple human papillomavirus infections with high viral loads are associated with cervical lesions but do not differentiate grades of cervical abnormalities. Journal of clinical microbiology. 2013;51(5):1458-64.

98. Zerbini M, Venturoli S, Cricca M, Gallinella G, De Simone P, Costa S, et al. Distribution and viral load of type specific HPVs in different cervical lesions as detected by PCR-ELISA. Journal of clinical pathology. 2001;54(5):377-80.

99. Hesselink AT, Berkhof J, Heideman DA, Bulkmans NW, van Tellingen JE, Meijer CJ, et al. High-risk human papillomavirus DNA load in a population-based cervical screening cohort in relation to the detection of high-grade cervical intraepithelial neoplasia and cervical cancer. International journal of cancer Journal international du cancer. 2009;124(2):381-6.

100. Flores R, Papenfuss M, Klimecki WT, Giuliano AR. Cross-sectional analysis of oncogenic HPV viral load and cervical intraepithelial neoplasia. International journal of cancer Journal international du cancer. 2006;118(5):1187-93.

101. Manawapat A, Stubenrauch F, Russ R, Munk C, Kjaer SK, Iftner T. Physical state and viral load as predictive biomarkersfor persistence and progression of HPV16-positive cervical lesions: results from a population based long-term prospective cohort study. American journal of cancer research. 2012;2(2):192-203.

102. Winer RL, Xi LF, Shen Z, Stern JE, Newman L, Feng Q, et al. Viral load and short-term natural history of type-specific oncogenic human papillomavirus infections in a high-risk cohort of midadult women. International journal of cancer Journal international du cancer. 2014;134(8):1889-98.

103. Kulmala SM, Syrjanen SM, Gyllensten UB, Shabalova IP, Petrovichev N, Tosi P, et al. Early integration of high copy HPV16 detectable in women with normal and low grade cervical cytology and histology. Journal of clinical pathology. 2006;59(5):513-7.

104. Nakagawa M, Stites DP, Patel S, Farhat S, Scott M, Hills NK, et al. Persistence of human papillomavirus type 16 infection is associated with lack of cytotoxic T lymphocyte response to the E6 antigens. The Journal of infectious diseases. 2000;182(2):595-8.

105. Brenna SM, Syrjanen KJ. Regulation of cell cycles is of key importance in human papillomavirus (HPV)-associated cervical carcinogenesis. Sao Paulo Med J. 2003;121(3):128-32.

106. van Duin M, Snijders PJ, Schrijnemakers HF, Voorhorst FJ, Rozendaal L, Nobbenhuis MA, et al. Human papillomavirus 16 load in normal and abnormal cervical scrapes: an indicator of CIN II/III and viral clearance. International journal of cancer Journal international du cancer. 2002;98(4):590-5.

107. Monnier-Benoit S, Dalstein V, Riethmuller D, Lalaoui N, Mougin C, Pretet JL. Dynamics of HPV16 DNA load reflect the natural history of cervical HPV-associated lesions. Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology. 2006;35(3):270-7.

108. Chan PK, Cheung JL, Cheung TH, Lo KW, Yim SF, Siu SS, et al. Profile of viral load, integration, and E2 gene disruption of HPV58 in normal cervix and cervical neoplasia. The Journal of infectious diseases. 2007;196(6):868-75.

TEME

Palavras-Chave #618.14 #Epidemiología #Cuello del útero #Neoplasias del cuello uterino #Virus del papiloma humano #Prueba de Papanicolaou #Uterine Cervical Dysplasia, High Risk Human Papillomavirus, Viral Load, Real-Time Polymerase Chain Reaction, Colombia.
Tipo

info:eu-repo/semantics/bachelorThesis

info:eu-repo/semantics/acceptedVersion