834 resultados para Network Analysis Methods


Relevância:

90.00% 90.00%

Publicador:

Resumo:

One of the most important challenges of network analysis remains the scarcity of reliable information on existing connection structures. This work explores theoretical and empirical methods of inferring directed networks from nodes attributes and from functions of these attributes that are computed for connected nodes. We discuss the conditions, under which an underlying connection structure can be (probabilistically) recovered, and propose a Bayesian recovery algorithm. In an empirical application, we test the algorithm on the data from the European School Survey Project on Alcohol and Other Drugs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper is concerned with the language of policy documents in the field of health care, and how ‘readings’ of such documents might be validated in the context of a narrative analysis. The substantive focus is on a comparative study of UK health policy documents (N=20) as produced by the various assemblies, governments and executives of England, Scotland, Wales and Northern Ireland during the period 2000-2009. Following an identification of some key characteristics of narrative structure the authors indicate how text-mining strategies allied with features of semantic and network analysis can be used to unravel the basic elements of policy stories and to facilitate the presentation of data in such a way that readers can verify the strengths (and weaknesses) of any given analysis – with regard to claims concerning, say, the presence, absence, or relative importance of key ideas and concepts. Readers can also ‘see’ how the different components of any one story might fit together, and to get a sense of what has been excluded from the narrative as well as what has been included, and thereby assess the reliability and validity of interpretations that have been placed upon the data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The conventional radial basis function (RBF) network optimization methods, such as orthogonal least squares or the two-stage selection, can produce a sparse network with satisfactory generalization capability. However, the RBF width, as a nonlinear parameter in the network, is not easy to determine. In the aforementioned methods, the width is always pre-determined, either by trial-and-error, or generated randomly. Furthermore, all hidden nodes share the same RBF width. This will inevitably reduce the network performance, and more RBF centres may then be needed to meet a desired modelling specification. In this paper we investigate a new two-stage construction algorithm for RBF networks. It utilizes the particle swarm optimization method to search for the optimal RBF centres and their associated widths. Although the new method needs more computation than conventional approaches, it can greatly reduce the model size and improve model generalization performance. The effectiveness of the proposed technique is confirmed by two numerical simulation examples.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose of this study is to survey the use of networks and network-based methods in systems biology. This study starts with an introduction to graph theory and basic measures allowing to quantify structural properties of networks. Then, the authors present important network classes and gene networks as well as methods for their analysis. In the last part of this study, the authors review approaches that aim at analysing the functional organisation of gene networks and the use of networks in medicine. In addition to this, the authors advocate networks as a systematic approach to general problems in systems biology, because networks are capable of assuming multiple roles that are very beneficial connecting experimental data with a functional interpretation in biological terms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Gene expression data can provide a very rich source of information for elucidating the biological function on the pathway level if the experimental design considers the needs of the statistical analysis methods. The purpose of this paper is to provide a comparative analysis of statistical methods for detecting the differentially expression of pathways (DEP). In contrast to many other studies conducted so far, we use three novel simulation types, producing a more realistic correlation structure than previous simulation methods. This includes also the generation of surrogate data from two large-scale microarray experiments from prostate cancer and ALL. As a result from our comprehensive analysis of 41,004 parameter configurations, we find that each method should only be applied if certain conditions of the data from a pathway are met. Further, we provide method-specific estimates for the optimal sample size for microarray experiments aiming to identify DEP in order to avoid an underpowered design. Our study highlights the sensitivity of the studied methods on the parameters of the system. © 2012 Tripahti and Emmert-Streib.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND:

We have recently identified a number of Quantitative Trait Loci (QTL) contributing to the 2-fold muscle weight difference between the LG/J and SM/J mouse strains and refined their confidence intervals. To facilitate nomination of the candidate genes responsible for these differences we examined the transcriptome of the tibialis anterior (TA) muscle of each strain by RNA-Seq.

RESULTS:

13,726 genes were expressed in mouse skeletal muscle. Intersection of a set of 1061 differentially expressed transcripts with a mouse muscle Bayesian Network identified a coherent set of differentially expressed genes that we term the LG/J and SM/J Regulatory Network (LSRN). The integration of the QTL, transcriptome and the network analyses identified eight key drivers of the LSRN (Kdr, Plbd1, Mgp, Fah, Prss23, 2310014F06Rik, Grtp1, Stk10) residing within five QTL regions, which were either polymorphic or differentially expressed between the two strains and are strong candidates for quantitative trait genes (QTGs) underlying muscle mass. The insight gained from network analysis including the ability to make testable predictions is illustrated by annotating the LSRN with knowledge-based signatures and showing that the SM/J state of the network corresponds to a more oxidative state. We validated this prediction by NADH tetrazolium reductase staining in the TA muscle revealing higher oxidative potential of the SM/J compared to the LG/J strain (p<0.03).

CONCLUSION:

Thus, integration of fine resolution QTL mapping, RNA-Seq transcriptome information and mouse muscle Bayesian Network analysis provides a novel and unbiased strategy for nomination of muscle QTGs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose: The Dementia Care Networks' Study examined the effectiveness of four community-based, not-for-profit dementia networks. The study involved assessing the relationship between the types of administrative and service-delivery exchanges that occurred among the networked agencies and the network members' perception of the effectiveness of these exchanges. Design and Methods: With the use of a case-study method, the evolution, structure, and processes of each network were documented. Social network analysis using a standardized questionnaire completed by member agencies identified patterns of administrative and clinical exchanges among networked agencies. Results: Differences were found between the four networks in terms of their perceptions of service-delivery effectiveness; perceptions of administrative effectiveness did not factor significantly. Exchanges between groups of agencies (cliques) within each of the four networks were found to be more critical than those between individual agencies within each network. Implications: Integration-measured by the types of exchanges within as opposed to across networks-differentiated the four networks studied. This research contributes to our understanding of the use of multiple measures to evaluate the inner workings of service delivery and their impact on elder health and elder health care. Copyright 2005 by The Gerontological Society of America.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper introduces the paired comparison model as a suitable approach for the analysis of partially ranked data. For example, the Inglehart index, collected in international social surveys to examine shifts in post-materialistic values, generates such data on a set of attitude items. However, current analysis methods have failed to account for the complex shifts in individual item values, or to incorporate subject covariates. The paired comparison model is thus developed to allow for covariate subject effects at the individual level, and a reparameterization allows the inclusion of smooth non-linear effects of continuous covariates. The Inglehart index collected in the 1993 International Social Science Programme survey is analysed, and complex non-linear changes of item values with age, level of education and religion are identified. The model proposed provides a powerful tool for social scientists.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

High-dimensional gene expression data provide a rich source of information because they capture the expression level of genes in dynamic states that reflect the biological functioning of a cell. For this reason, such data are suitable to reveal systems related properties inside a cell, e.g., in order to elucidate molecular mechanisms of complex diseases like breast or prostate cancer. However, this is not only strongly dependent on the sample size and the correlation structure of a data set, but also on the statistical hypotheses tested. Many different approaches have been developed over the years to analyze gene expression data to (I) identify changes in single genes, (II) identify changes in gene sets or pathways, and (III) identify changes in the correlation structure in pathways. In this paper, we review statistical methods for all three types of approaches, including subtypes, in the context of cancer data and provide links to software implementations and tools and address also the general problem of multiple hypotheses testing. Further, we provide recommendations for the selection of such analysis methods.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Context. Comet 67P/Churyumov-Gerasimenko is the target of the European Space Agency Rosetta spacecraft rendez-vous mission. Detailed physical characteristation of the comet before arrival is important for mission planning as well as providing a test bed for ground-based observing and data-analysis methods. Aims: To conduct a long-term observational programme to characterize the physical properties of the nucleus of the comet, via ground-based optical photometry, and to combine our new data with all available nucleus data from the literature. Methods: We applied aperture photometry techniques on our imaging data and combined the extracted rotational lightcurves with data from the literature. Optical lightcurve inversion techniques were applied to constrain the spin state of the nucleus and its broad shape. We performed a detailed surface thermal analysis with the shape model and optical photometry by incorporating both into the new Advanced Thermophysical Model (ATPM), along with all available Spitzer 8-24 μm thermal-IR flux measurements from the literature. Results: A convex triangular-facet shape model was determined with axial ratios b/a = 1.239 and c/a = 0.819. These values can vary by as much as 7% in each axis and still result in a statistically significant fit to the observational data. Our best spin state solution has Psid = 12.76137 ± 0.00006 h, and a rotational pole orientated at Ecliptic coordinates λ = 78°(±10°), β = + 58°(±10°). The nucleus phase darkening behaviour was measured and best characterized using the IAU HG system. Best fit parameters are: G = 0.11 ± 0.12 and HR(1,1,0) = 15.31 ± 0.07. Our shape model combined with the ATPM can satisfactorily reconcile all optical and thermal-IR data, with the fit to the Spitzer 24 μm data taken in February 2004 being exceptionally good. We derive a range of mutually-consistent physical parameters for each thermal-IR data set, including effective radius, geometric albedo, surface thermal inertia and roughness fraction. Conclusions: The overall nucleus dimensions are well constrained and strongly imply a broad nucleus shape more akin to comet 9P/Tempel 1, rather than the highly elongated or "bi-lobed" nuclei seen for comets 103P/Hartley 2 or 8P/Tuttle. The derived low thermal inertia of

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Late-onset Alzheimer's disease (AD) is heritable with 20 genes showing genome-wide association in the International Genomics of Alzheimer's Project (IGAP). To identify the biology underlying the disease, we extended these genetic data in a pathway analysis.

Methods: The ALIGATOR and GSEA algorithms were used in the IGAP data to identify associated functional pathways and correlated gene expression networks in human brain.

Results: ALIGATOR identified an excess of curated biological pathways showing enrichment of association. Enriched areas of biology included the immune response (P = 3.27 X 10(-12) after multiple testing correction for pathways), regulation of endocytosis (P = 1.31 X 10(-11)), cholesterol transport (P = 2.96 X 10(-9)), and proteasome-ubiquitin activity (P = 1.34 X 10(-6)). Correlated gene expression analysis identified four significant network modules, all related to the immune response (corrected P = .002-.05).

Conclusions: The immime response, regulation of endocytosis, cholesterol transport, and protein ubiquitination represent prime targets for AD therapeutics. (C) 2015 Published by Elsevier Inc. on behalf of The Alzheimer's Association.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The rate and, more importantly, selectivity (ketone vs aromatic ring) of the hydrogenation of 4-phenyl-2-butanone over a Pt/TiO2 catalyst have been shown to vary with solvent. In this study, a fundamental kinetic model for this multi-phase reaction has been developed incorporating statistical analysis methods to strengthen the foundations of mechanistically sound kinetic models. A 2-site model was determined to be most appropriate, describing aromatic hydrogenation (postulated to be over a platinum site) and ketone hydrogenation (postulated to be at the platinum–titania interface). Solvent choice has little impact on the ketone hydrogenation rate constant but strongly impacts aromatic hydrogenation due to solvent-catalyst interaction. Reaction selectivity is also correlated to a fitted product adsorption constant parameter. The kinetic analysis method shown has demonstrated the role of solvents in influencing reactant adsorption and reaction selectivity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study, a comparison of different methods to predict drug−polymer solubility was carried out on binary systems consisting of five model drugs (paracetamol, chloramphenicol, celecoxib, indomethacin, and felodipine) and polyvinylpyrrolidone/vinyl acetate copolymers (PVP/VA) of different monomer weight ratios. The drug−polymer solubility at 25 °C was predicted using the Flory−Huggins model, from data obtained at elevated temperature using thermal analysis methods based on the recrystallization of a supersaturated amorphous solid dispersion and two variations of the melting point depression method. These predictions were compared with the solubility in the low molecular weight liquid analogues of the PVP/VA copolymer (N-vinylpyrrolidone and vinyl acetate). The predicted solubilities at 25 °C varied considerably depending on the method used. However, the three thermal analysis methods ranked the predicted solubilities in the same order, except for the felodipine−PVP system. Furthermore, the magnitude of the predicted solubilities from the recrystallization method and melting point depression method correlated well with the estimates based on the solubility in the liquid analogues, which suggests that this method can be used as an initial screening tool if a liquid analogue is available. The learnings of this important comparative study provided general guidance for the selection of the most suitable method(s) for the screening of drug−polymer solubility.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents the numerical simulation of the ultimate behaviour of 85 one-way and two-way spanning laterally restrained concrete slabs of variable thickness, span, reinforcement ratio, strength and boundary conditions reported in literature by different authors. The developed numerical model was described and all the assumptions were illustrated. ABAQUS, a Finite Element Analysis suite of software, was employed. Non-linear implicit static general analysis method offered by ABAQUS was used. Other analysis methods were also discussed in general in terms of application such as Explicit Dynamic Analysis and Riks method. The aim is to demonstrate the ability and efficacy of FEA to simulate the ultimate load behaviour of slabs considering different material properties and boundary conditions. The authors intended to present a numerical model that provides consistent predictions of the ultimate behaviour of laterally restrained slabs that could be used as an alternative for expensive real life testing as well as for the design and assessment of new and existing structures respectively. The enhanced strength of laterally-restrained slabs compared with conventional design methods predictions is believed to be due to compressive membrane action (CMA). CMA is an inherent phenomenon of laterally restrained concrete beams/slabs. The numerical predictions obtained from the developed model were in good correlation with the experimental results and with those obtained from the CMA method developed at the Queen’s University Belfast, UK.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVES: To demonstrate how individual participant data (IPD) meta-analyses have impacted directly on the design and conduct of trials and highlight other advantages IPD might offer.

STUDY DESIGN AND SETTING: Potential examples of the impact of IPD meta-analyses on trials were identified at an international workshop, attended by individuals with experience in the conduct of IPD meta-analyses and knowledge of trials in their respective clinical areas. Experts in the field who did not attend were asked to provide any further examples. We then examined relevant trial protocols, publications, and Web sites to verify the impacts of the IPD meta-analyses. A subgroup of workshop attendees sought further examples and identified other aspects of trial design and conduct that may inform IPD meta-analyses.

RESULTS: We identified 52 examples of IPD meta-analyses thought to have had a direct impact on the design or conduct of trials. After screening relevant trial protocols and publications, we identified 28 instances where IPD meta-analyses had clearly impacted on trials. They have influenced the selection of comparators and participants, sample size calculations, analysis and interpretation of subsequent trials, and the conduct and analysis of ongoing trials, sometimes in ways that would not possible with systematic reviews of aggregate data. We identified additional potential ways that IPD meta-analyses could be used to influence trials.

CONCLUSIONS: IPD meta-analysis could be better used to inform the design, conduct, analysis, and interpretation of trials.