676 resultados para Net reproductive rate
Resumo:
Ocean acidification (OA) is the reduction in seawater pH due to the absorption of human-released CO2 by the world's oceans. The average surface oceanic pH is predicted to decline by 0.4 units by 2100. However, kelp metabolically modifies seawater pH via photosynthesis and respiration in some temperate coastal systems, resulting in daily pH fluctuations of up to ±0.45 units. It is unknown how these fluctuations in pH influence the growth and physiology of the kelp, or how this might change with OA. In laboratory experiments that mimicked the most extreme pH fluctuations measured within beds of the canopy-forming kelp Ecklonia radiata in Tasmania, the growth and photosynthetic rates of juvenile E. radiata were greater under fluctuating pH (8.4 in the day, 7.8 at night) than in static pH treatments (8.4, 8.1, 7.8). However, pH fluctuations had no effect on growth rates and a negative effect on photosynthesis when the mean pH of each treatment was reduced by 0.3 units. Currently, pH fluctuations have a positive effect on E. radiata but this effect could be reversed in the future under OA, which is likely to impact the future ecological dynamics and productivity of habitats dominated by E. radiata.
Resumo:
The rise in atmospheric CO2 has caused significant decrease in sea surface pH and carbonate ion (CO3-2) concentration. This decrease has a negative effect on calcification in hermatypic corals and other calcifying organisms. We report the results of three laboratory experiments designed specifically to separate the effects of the different carbonate chemistry parameters (pH, CO3-2, CO2 [aq], total alkalinity [AT], and total inorganic carbon [CT]) on the calcification, photosynthesis, and respiration of the hermatypic coral Acropora eurystoma. The carbonate system was varied to change pH (7.9-8.5), without changing CT; CT was changed keeping the pH constant, and CT was changed keeping the pCO2 constant. In all of these experiments, calcification (both light and dark) was positively correlated with CO3-2 concentration, suggesting that the corals are not sensitive to pH or CT but to the CO3-2 concentration. A decrease of ~30% in the CO3-2 concentration (which is equivalent to a decrease of about 0.2 pH units in seawater) caused a calcification decrease of about 50%. These results suggest that calcification in today's ocean (pCO2 = 370 ppm) is lower by ~20% compared with preindustrial time (pCO2 = 280 ppm). An additional decrease of ~35% is expected if atmospheric CO2 concentration doubles (pCO2 = 560 ppm). In all of these experiments, photosynthesis and respiration did not show any significant response to changes in the carbonate chemistry of seawater. Based on this observation, we propose a mechanism by which the photosynthesis of symbionts is enhanced by coral calcification at high pH when CO2(aq) is low. Overall it seems that photosynthesis and calcification support each other mainly through internal pH regulation, which provides CO3-2 ions for calcification and CO2(aq) for photosynthesis.
Resumo:
Previous studies have shown that increasing atmospheric CO2 concentrations affect calcification in some planktonic and macroalgal calcifiers due to the changed carbonate chemistry of seawater. However, little is known regarding how calcifying algae respond to solar UV radiation (UVR, UVA+UVB, 280-400 nm). UVR may act synergistically, antagonistically or independently with ocean acidification (high CO2/low pH of seawater) to affect their calcification processes. We cultured the articulated coralline alga Corallina sessilis Yendo at 380 ppmv (low) and 1000 ppmv (high) CO2 levels while exposing the alga to solar radiation treatments with or without UVR. The presence of UVR inhibited the growth, photosynthetic O2evolution and calcification rates by13%, 6% and 3% in the low and by 47%, 20% and 8% in the high CO2 concentrations, respectively, reflecting a synergistic effect of CO2 enrichment with UVR. UVR induced significant decline of pH in the CO2-enriched cultures. The contents of key photosynthetic pigments, chlorophyll a and phycobiliproteins decreased, while UV-absorptivity increased under the highpCO2/low pH condition. Nevertheless, UV-induced inhibition of photosynthesis increased when the ratio of particulate inorganic carbon/particulate organic carbon decreased under the influence of CO2-acidified seawater, suggesting that the calcified layer played a UV-protective role. Both UVA and UVB negatively impacted photosynthesis and calcification, but the inhibition caused by UVB was about 2.5-2.6 times that caused by UVA. The results imply that coralline algae suffer from more damage caused by UVB as they calcify less and less with progressing ocean acidification.
Resumo:
The effect of elevated pCO2/low pH on marine invertebrate benthic biodiversity, community structure and selected functional responses which underpin ecosystem services (such as community production and calcification) was tested in a medium-term (30 days) mesocosm experiment in June 2010. Standardised intertidal macrobenthic communities, collected (50.3567°N, 4.1277°W) using artificial substrate units (ASUs), were exposed to one of seven pH treatments (8.05, 7.8. 7.6, 7.4, 7.2, 6.8 and 6.0). Community net calcification/dissolution rates, as well as changes in biomass, community structure and diversity, were measured at the end of the experimental period. Communities showed significant changes in structure and reduced diversity in response to reduced pH: shifting from a community dominated by calcareous organisms to one dominated by non-calcareous organisms around either pH 7.2 (number of individuals and species) or pH 7.8 (biomass). These results were supported by a reduced total weight of CaCO3 structures in all major taxa at lowered pH and a switch from net calcification to net dissolution around pH 7.4 (Omega calc = 0.78, Omega ara = 0.5). Overall community soft tissue biomass did not change with pH and high mortality was observed only at pH 6.0, although molluscs and arthropods showed significant decreases in soft tissue. This study supports and refines previous findings on how elevated pCO2 can induce changes in marine biodiversity, underlined by differential vulnerability of different phyla. In addition, it shows significant elevated pCO2-/low pH-dependent changes in fundamental community functional responses underpinning changes in ecosystem services.
Resumo:
The oceans take up more than 1 million tons of CO2 from the air per hour, about one-quarter of the anthropogenically released amount, leading to disrupted seawater chemistry due to increasing CO2 emissions. Based on the fossil fuel-intensive CO2 emission scenario (A1F1; Houghton et al., 2001), the H+ concentration or acidity of surface seawater will increase by about 150% (pH drop by 0.4) by the end of this century, the process known as ocean acidification (OA; Sabine et al., 2004; Doney et al., 2009; Gruber et al., 2012). Seawater pH is suggested to decrease faster in the coastal waters than in the pelagic oceans due to the interactions of hypoxia, respiration, and OA (Cai et al., 2011). Therefore, responses of coastal algae to OA are of general concern, considering the economic and social services provided by the coastal ecosystem that is adjacent to human living areas and that is dependent on coastal primary productivity. On the other hand, dynamic environmental changes in the coastal waters can interact with OA (Beardall et al., 2009).
Resumo:
Marine organisms inhabiting environments where pCO2/pH varies naturally are suggested to be relatively resilient to future ocean acidification. To test this hypothesis, the effect of elevated pCO2 was investigated in the articulated coralline red alga Corallina elongata from an intertidal rock pool on the north coast of Brittany (France), where pCO2 naturally varied daily between 70 and 1000 µatm. Metabolism was measured on algae in the laboratory after they had been grown for 3 weeks at pCO2 concentrations of 380, 550, 750 and 1000 µatm. Net and gross primary production, respiration and calcification rates were assessed by measurements of oxygen and total alkalinity fluxes using incubation chambers in the light and dark. Calcite mol % Mg/Ca (mMg/Ca) was analysed in the tips, branches and basal parts of the fronds, as well as in new skeletal structures produced by the algae in the different pCO2 treatments. Respiration, gross primary production and calcification in light and dark were not significantly affected by increased pCO2. Algae grown under elevated pCO2 (550, 750 and 1000 µatm) formed fewer new structures and produced calcite with a lower mMg/Ca ratio relative to those grown under 380 µatm. This study supports the assumption that C. elongata from a tidal pool, where pCO2 fluctuates over diel and seasonal cycles, is relatively robust to elevated pCO2 compared to other recently investigated coralline algae.
Resumo:
There are serious concerns that ocean acidification will combine with the effects of global warming to cause major shifts in marine ecosystems, but there is a lack of field data on the combined ecological effects of these changes due to the difficulty of creating large-scale, long-term exposures to elevated CO2 and temperature. Here we report the first coastal transplant experiment designed to investigate the effects of naturally acidified seawater on the rates of net calcification and dissolution of the branched calcitic bryozoan Myriapora truncata (Pallas, 1766). Colonies were transplanted to normal (pH 8.1), high (mean pH 7.66, minimum value 7.33) and extremely high CO2 conditions (mean pH 7.43, minimum value 6.83) at gas vents off Ischia Island (Tyrrhenian Sea, Italy). The net calcification rates of live colonies and the dissolution rates of dead colonies were estimated by weighing after 45 days (May-June 2008) and after 128 days (July-October) to examine the hypothesis that high CO2 levels affect bryozoan growth and survival differently during moderate and warm water conditions. In the first observation period, seawater temperatures ranged from 19 to 24 °C; dead M. truncata colonies dissolved at high CO2 levels (pH 7.66), whereas live specimens maintained the same net calcification rate as those growing at normal pH. In extremely high CO2 conditions (mean pH 7.43), the live bryozoans calcified significantly less than those at normal pH. Therefore, established colonies of M. truncata seem well able to withstand the levels of ocean acidification predicted in the next 200 years, possibly because the soft tissues protect the skeleton from an external decrease in pH. However, during the second period of observation a prolonged period of high seawater temperatures (25-28 °C) halted calcification both in controls and at high CO2, and all transplants died when high temperatures were combined with extremely high CO2 levels. Clearly, attempts to predict the future response of organisms to ocean acidification need to consider the effects of concurrent changes such as the Mediterranean trend for increased summer temperatures in surface waters. Although M. truncata was resilient to short-term exposure to high levels of ocean acidification at normal temperatures, our field transplants showed that its ability to calcify at higher temperatures was compromised, adding it to the growing list of species now potentially threatened by global warming.
Resumo:
We show here that CO2 partial pressure (pCO2) and temperature significantly interact on coral physiology. The effects of increased pCO2 and temperature on photosynthesis, respiration and calcification rates were investigated in the scleractinian coral Stylophora pistillata. Cuttings were exposed to temperatures of 25°C or 28°C and to pCO2 values of ca. 460 or 760 muatm for 5 weeks. The contents of chlorophyll c2 and protein remained constant throughout the experiment, while the chlorophyll a content was significantly affected by temperature, and was higher under the 'high-temperature-high-pCO2' condition. The cell-specific density was higher at 'high pCO2' than at 'normal pCO2' (1.7 vs. 1.4). The net photosynthesis normalized per unit protein was affected by both temperature and pCO2, whereas respiration was not affected by the treatments. Calcification decreased by 50% when temperature and pCO2 were both elevated. Calcification under normal temperature did not change in response to an increased pCO2. This is not in agreement with numerous published papers that describe a negative relationship between marine calcification and CO2. The confounding effect of temperature has the potential to explain a large portion of the variability of the relationship between calcification and pCO2 reported in the literature, and warrants a re-evaluation of the projected decrease of marine calcification by the year 2100.
Reduced calcification decreases photoprotective capability in the Coccolithophorid Emiliania huxleyi
Resumo:
Intracellular calcification of coccolithophores generates CO2 and consumes additional energy for acquisition of calcium and bicarbonate ions; therefore, it may correlate with photoprotective processes by influencing the energetics. To address this hypothesis, a calcifying Emiliania huxleyi strain (CS-369) was grown semi-continuously at reduced (0.1 mM, LCa) and ambient Ca2+ concentrations (10 mM, HCa) for 150 d (>200 generations). The HCa-grown cells had higher photosynthetic and calcification rates and higher contents of Chl a and carotenoids compared with the naked (bearing no coccoliths) LCa-grown cells. When exposed to stressfull levels of photosynthetically active radiation (PAR), LCa-grown cells displayed lower photochemical yield and less efficient non-photochemical quenching (NPQ). When the LCa- or HCa-grown cells were inversely shifted to their counterpart medium, LCa to HCa transfer increased photosynthetic carbon fixation (P), calcification rate (C), the C/P ratio, NPQ and pigment contents, whereas those shifted from HCa to LCa exhibited the opposite effects. Increased NPQ, carotenoids and quantum yield were clearly linked with increased or sustained calcification in E. huxleyi. The calcification must have played a role in dissipating excessive energy or as an additional drainage of electrons absorbed by the photosynthetic antennae. This phenomenon was further supported by testing two non-calcifying strains, which showed insignificant changes in photosynthetic carbon fixation and NPQ when transferred to LCa conditions
Resumo:
Ocean acidification (OA) is expected to reduce the net ecosystem calcification (NEC) rates and overall accretion of coral reef ecosystems. However, despite the fact that sediments are the most abundant form of calcium carbonate (CaCO3) in coral reef ecosystems and their dissolution may be more sensitive to OA than biogenic calcification, the impacts of OA induced sediment dissolution on coral reef NEC rates and CaCO3 accretion are poorly constrained. Carbon dioxide addition and light attenuation experiments were performed at Heron Island, Australia in an attempt to tease apart the influence of OA and organic metabolism (e.g. respiratory CO2 production) on CaCO3 dissolution. Overall, CaCO3 dissolution rates were an order of magnitude more sensitive to elevated CO2 and decreasing seawater aragonite saturation state (Omega Ar; 300-420% increase in dissolution per unit decrease in Omega Ar) than published reductions in biologically mediated calcification due to OA. Light attenuation experiments led to a 70% reduction in net primary production (NPP), which subsequently induced an increase in daytime (115%) and net diel (375%) CaCO3 dissolution rates. High CO2 and low light acted in synergy to drive a 575% increase in net diel dissolution rates. Importantly, disruptions to the balance of photosynthesis and respiration (P/R) had a significant effect on daytime CaCO3 dissolution, while average water column ?Ar was the main driver of nighttime dissolution rates. A simple model of platform-integrated dissolution rates was developed demonstrating that seasonal changes in photosynthetically active radiation (PAR) can have an important effect on platform integrated CaCO3 sediment dissolution rates. The considerable response of CaCO3 sediment dissolution to elevated CO2 means that much of the response of coral reef communities and ecosystems to OA could be due to increases in CaCO3 sediment and framework dissolution, and not decreases in biogenic calcification.
Resumo:
O estudo teve como objetivo descrever a biologia reprodutiva e a dieta de populações de Thamnodynastes hypoconia em ambientes úmidos subtemperados do extremo sul brasileiro. Para avaliação da reprodução foram feitas análises macroscópicas das gônadas. Para avaliação da ecologia alimentar foram empregadas análises de conteúdo estomacal e de isótopos estáveis (δ13C e δ15N). Os machos apresentaram maior comprimento rostro-cloacal que as fêmeas e atingiram a maturidade sexual com menor tamanho corporal. O ciclo reprodutivo das fêmeas foi sazonal, com vitelogênese secundária ocorrendo entre o inverno e a primavera. Os machos apresentaram ciclo contínuo. Aparentemente a cópula ocorre entre o final da primavera e o início do verão, quando foram detectados embriões nas fêmeas e a parturição ocorreu no verão. Não houve relação entre o tamanho da ninhada e o tamanho da fêmea, e a frequência reprodutiva de 40% foi considerada relativamente baixa. Todavia, por ser uma espécie dominante em banhados subtemperados do extremo sul do Brasil sua estratégia reprodutiva parece ser eficiente. Dessa forma, o ciclo contínuo dos machos, bem como a viviparidade possam potencializar o deslocamento do pico reprodutivo da população de modo a ajustar-se de acordo com os picos de temperatura do ambiente. A análise de conteúdo estomacal mostrou uma dieta predominantemente anurófaga, exceto por um único lagarto. Hylidae foi a família mais representativa, com predomínio de Hypsiboas pulchellus, seguida de Leptodactylidae, onde Leptodactylus latrans teve maior importância. As análises de isótopos estáveis corroboraram a importância dessas espécies na alimentação da serpente. Apesar de ser uma serpente terrestre, T. hypoconia apresentou assinatura isotópica mais próxima das fontes primárias oriundas do ambiente aquático, o que indica a importância das áreas alagáveis para a subsistência de organismos terrestres de habitats adjacentes.
Resumo:
Este trabalho teve como objetivo determinar o efeito da intensidade de luz no crescimento de mudas de Hymenaea parvifolia Huber., bem como inferir sobre o seu grau de tolerância à sombra. Para tal, foi instalado um experimento em delineamento inteiramente casualizado, com quatro tratamentos (níveis de luz): pleno sol (PS), 50% de sombreamento, 70% de sombreamento e sombreamento natural (SN). Os níveis de 50 e 70% de sombreamento foram obtidos com o uso de telas de polipropileno preto, e o sombreamento natural constituiu a luminosidade natural sob um dossel fechado de floresta. Cada tratamento foi constituído de 10 repetições. Plantas sob sombreamento (50% e 70% de sombreamento) apresentaram maior altura, área foliar e razão de área foliar e poucas diferenças no acúmulo de massa seca quando comparadas com plantas mantidas a pleno sol. Como conseqüência, poucas diferenças foram observadas na taxa de crescimento relativo das mudas desses tratamentos. Todavia, mudas mantidas sob sombreamento natural foram as que exibiram menor taxa de crescimento relativo e taxa assimilatória líquida. em conjunto, os resultados indicaram que Hymenaea parvifolia foi capaz de se ajustar para maximizar a aquisição de luz mesmo em condição muito limitante, como a proporcionada pelo sombreamento natural, e a produção de mudas dessa espécie vegetal pode ser realizada em viveiro desde a pleno sol, como a 50% ou 70% de sombreamento.
Change in individual growth rate and its link to gill-net fishing in two sympatric whitefish species
Resumo:
Size-selective fishing is expected to affect traits such as individual growth rate, but the relationship between the fishery-linked selection differentials and the corresponding phenotypic changes is not well understood. We analysed a 25-year monitoring survey of sympatric populations of the two Alpine whitefish Coregonus albellus and C. fatioi. We determined the fishing-induced selection differentials on growth rates, the actual change of growth rates over time, and potential indicators of reproductive strategies that may change over time. We found marked declines in adult growth rate and significant selection differentials that may partly explain the observed declines. However, when comparing the two sympatric species, the selection differentials on adult growth were stronger in C. albellus while the decline in adult growth rate seemed more pronounced in C. fatioi. Moreover, the selection differential on juvenile growth was significant in C. albellus but not in C. fatioi, while a significant reduction in juvenile growth over the last 25 years was only found in C. fatioi. Our results suggest that size-selective fishing affects the genetics for individual growth in these whitefish, and that the link between selection differentials and phenotypic changes is influenced by species-specific factors.
Resumo:
The objective was to evaluate the effects of giving prostaglandin F(2 alpha) (PGF) to donor mares 48 h prior to embryo collection. Non-lactating donor mares (n = 20 estrous cycles in 10 mares), ranging from 2.5 to 10 y of age and 400 to 500 kg of body weight were used from September 2004 to February 2005 in the southern hemisphere (Brazil). Donor mares were randomly assigned in a cross-over design study. During a Treated cycle, 7.5 mg PGF was given 48 h prior to embryo collection, whereas in the Control cycle, 7.5 mg PGF was given at embryo collection. In Treated Cycles, serum progesterone concentrations decreased between the day of PGF treatment and the day of embryo collection (13.9 +/- 5.4 and 0.5 +/- 0.3 ng/mL, respectively; P < 0.05). In Treated versus Control cycles, the interovulatory interval was shorter (14.9 +/- 0.9 vs 17.5 +/- 1.1 d, P < 0.05). However, there was no significant difference between these groups for the interval from PGF to ovulation (average, 9.8 d), embryo recovery rate (average, 75%), embryo quality, uterine protein concentration, and pregnancy rate in recipient mares (average, 87% at 15 d after ovulation, with no pregnancy loss detected by 60 d). In conclusion, giving donor mares PGF 48 h prior to embryo collection reduced the average interovulatory interval by approximately 2.5 d, thereby potentially increasing the numbers of embryos that could be collected during a breeding season, with no deleterious effects on embryo recovery rate, embryo quality, or pregnancy rate in recipient mares. (c) 2011 Elsevier B.V. All rights reserved.